Your browser doesn't support javascript.
loading
Synergistic therapeutic effect of nanomotors triggered by Near-infrared light and acidic conditions of tumor.
Zhang, Shirong; Liu, Xuan; Hao, Yijie; Yang, Hongna; Zhao, Wenbo; Mao, Chun; Ma, Shenglin.
Afiliação
  • Zhang S; Translational Medicine Research Centre, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Cancer Center, Zhejiang University School of Medicine, Hangzhou 310006, PR China.
  • Liu X; National and Local Joint Engineering Research Center of Biomedical Functional Materials Jiangsu Key Laboratory of Biofunctional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China.
  • Hao Y; National and Local Joint Engineering Research Center of Biomedical Functional Materials Jiangsu Key Laboratory of Biofunctional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China.
  • Yang H; National and Local Joint Engineering Research Center of Biomedical Functional Materials Jiangsu Key Laboratory of Biofunctional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China.
  • Zhao W; National and Local Joint Engineering Research Center of Biomedical Functional Materials Jiangsu Key Laboratory of Biofunctional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China. Electronic address: zhaowenbo@njnu.edu.cn.
  • Mao C; National and Local Joint Engineering Research Center of Biomedical Functional Materials Jiangsu Key Laboratory of Biofunctional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China. Electronic address: maochun@njnu.edu.cn.
  • Ma S; Translational Medicine Research Centre, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Cancer Center, Zhejiang University School of Medicine, Hangzhou 310006, PR China; Affiliated Hangzhou Cancer Hospital, Zhe
J Colloid Interface Sci ; 650(Pt A): 67-80, 2023 Nov 15.
Article em En | MEDLINE | ID: mdl-37393769
ABSTRACT
Due to the complexity of tumors, multimodal therapy for them has always been of concern to researchers. How to design a multifunctional drug nanoplatform with cascade effect and capable of responding to specific stimuli in the tumor microenvironment is the key to achieve efficient multimodal synergistic therapy of cancer. Here, we prepare a kind of GNRs@SiO2@PDA-CuO2-l-Arg (GSPRs-CL) nanomotors for systematic treatment of tumor. First, under near-infrared (NIR) irradiation, GSPRs-CL can generate heat and exhibit excellent photothermal therapy effect. Then under acidic conditions, CuO2 can be decomposed to release Cu2+ and generate H2O2, which not only complemented the limited endogenous H2O2 in cells, but also further triggered Fenton-like reaction, converting H2O2 into •OH to kill cancer cells, thereby achieving chemodynamic therapy. Furthermore, both endogenous and exogenous H2O2 can release nitric oxide (NO) in response to the occurrence of l-Arg of nanomotors to enhance gas therapy. In addition, as a dual-mode drive, NIR laser and NO can promote the penetration ability of nanomotors at tumor sites. The experimental results in vivo show that the drug nanoplatform had good biosafety and significant tumor killing effect triggered by NIR light and acidic conditions of tumor. It provide a promising strategy for the development of advanced drug nanoplatform for cancer therapy.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Nanopartículas / Neoplasias Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Nanopartículas / Neoplasias Idioma: En Ano de publicação: 2023 Tipo de documento: Article