Your browser doesn't support javascript.
loading
Brain imaging signatures of neuropathic facial pain derived by artificial intelligence.
Latypov, Timur H; So, Matthew C; Hung, Peter Shih-Ping; Tsai, Pascale; Walker, Matthew R; Tohyama, Sarasa; Tawfik, Marina; Rudzicz, Frank; Hodaie, Mojgan.
Afiliação
  • Latypov TH; Division of Brain, Imaging & Behaviour, Krembil Research Institute, University Health Network, Toronto, ON, Canada.
  • So MC; Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
  • Hung PS; Collaborative Program in Neuroscience, University of Toronto, Toronto, ON, Canada.
  • Tsai P; Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada.
  • Walker MR; Division of Brain, Imaging & Behaviour, Krembil Research Institute, University Health Network, Toronto, ON, Canada.
  • Tohyama S; Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
  • Tawfik M; Collaborative Program in Neuroscience, University of Toronto, Toronto, ON, Canada.
  • Rudzicz F; Michael G. DeGroote School of Medicine, McMaster University, Hamilton, ON, Canada.
  • Hodaie M; Division of Brain, Imaging & Behaviour, Krembil Research Institute, University Health Network, Toronto, ON, Canada.
Sci Rep ; 13(1): 10699, 2023 07 03.
Article em En | MEDLINE | ID: mdl-37400574
Advances in neuroimaging have permitted the non-invasive examination of the human brain in pain. However, a persisting challenge is in the objective differentiation of neuropathic facial pain subtypes, as diagnosis is based on patients' symptom descriptions. We use artificial intelligence (AI) models with neuroimaging data to distinguish subtypes of neuropathic facial pain and differentiate them from healthy controls. We conducted a retrospective analysis of diffusion tensor and T1-weighted imaging data using random forest and logistic regression AI models on 371 adults with trigeminal pain (265 classical trigeminal neuralgia (CTN), 106 trigeminal neuropathic pain (TNP)) and 108 healthy controls (HC). These models distinguished CTN from HC with up to 95% accuracy, and TNP from HC with up to 91% accuracy. Both classifiers identified gray and white matter-based predictive metrics (gray matter thickness, surface area, and volume; white matter diffusivity metrics) that significantly differed across groups. Classification of TNP and CTN did not show significant accuracy (51%) but highlighted two structures that differed between pain groups-the insula and orbitofrontal cortex. Our work demonstrates that AI models with brain imaging data alone can differentiate neuropathic facial pain subtypes from healthy data and identify regional structural indicates of pain.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Inteligência Artificial / Neuralgia Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Inteligência Artificial / Neuralgia Idioma: En Ano de publicação: 2023 Tipo de documento: Article