Your browser doesn't support javascript.
loading
Cell reprogramming in a predictable manner on the superhydrophobic microwell array chip.
Qu, Jianan; Wang, Xiaoqing; Zhang, Yang; Hu, Ruowen; Hao, Yunqi; Zhao, Xuechen; Dong, Chunhui; Yang, Chengxi; Zhang, Weirong; Sui, Jingchao; Huang, Yan; Liu, Peng; Yu, Jian; Chen, Xiaofang; Fan, Yubo.
Afiliação
  • Qu J; Beijing Advanced Innovation Centre for Biomedical Engineering, Key Laboratory for Biomechanics and Mechanobiology of Chinese Education Ministry, School of Biological Science and Medical Engineering, Beihang University, No.37, Xueyuan Road, Haidian District, Beijing, China.
  • Wang X; Beijing Advanced Innovation Centre for Biomedical Engineering, Key Laboratory for Biomechanics and Mechanobiology of Chinese Education Ministry, School of Biological Science and Medical Engineering, Beihang University, No.37, Xueyuan Road, Haidian District, Beijing, China.
  • Zhang Y; Beijing Advanced Innovation Centre for Biomedical Engineering, Key Laboratory for Biomechanics and Mechanobiology of Chinese Education Ministry, School of Biological Science and Medical Engineering, Beihang University, No.37, Xueyuan Road, Haidian District, Beijing, China.
  • Hu R; Beijing Advanced Innovation Centre for Biomedical Engineering, Key Laboratory for Biomechanics and Mechanobiology of Chinese Education Ministry, School of Biological Science and Medical Engineering, Beihang University, No.37, Xueyuan Road, Haidian District, Beijing, China.
  • Hao Y; Beijing Advanced Innovation Centre for Biomedical Engineering, Key Laboratory for Biomechanics and Mechanobiology of Chinese Education Ministry, School of Biological Science and Medical Engineering, Beihang University, No.37, Xueyuan Road, Haidian District, Beijing, China.
  • Zhao X; Beijing Advanced Innovation Centre for Biomedical Engineering, Key Laboratory for Biomechanics and Mechanobiology of Chinese Education Ministry, School of Biological Science and Medical Engineering, Beihang University, No.37, Xueyuan Road, Haidian District, Beijing, China.
  • Dong C; Beijing Advanced Innovation Centre for Biomedical Engineering, Key Laboratory for Biomechanics and Mechanobiology of Chinese Education Ministry, School of Biological Science and Medical Engineering, Beihang University, No.37, Xueyuan Road, Haidian District, Beijing, China.
  • Yang C; Beijing Advanced Innovation Centre for Biomedical Engineering, Key Laboratory for Biomechanics and Mechanobiology of Chinese Education Ministry, School of Biological Science and Medical Engineering, Beihang University, No.37, Xueyuan Road, Haidian District, Beijing, China.
  • Zhang W; Beijing Advanced Innovation Centre for Biomedical Engineering, Key Laboratory for Biomechanics and Mechanobiology of Chinese Education Ministry, School of Biological Science and Medical Engineering, Beihang University, No.37, Xueyuan Road, Haidian District, Beijing, China.
  • Sui J; Beijing Advanced Innovation Centre for Biomedical Engineering, Key Laboratory for Biomechanics and Mechanobiology of Chinese Education Ministry, School of Biological Science and Medical Engineering, Beihang University, No.37, Xueyuan Road, Haidian District, Beijing, China.
  • Huang Y; Beijing Advanced Innovation Centre for Biomedical Engineering, Key Laboratory for Biomechanics and Mechanobiology of Chinese Education Ministry, School of Biological Science and Medical Engineering, Beihang University, No.37, Xueyuan Road, Haidian District, Beijing, China.
  • Liu P; Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China.
  • Yu J; School of Engineering Medicine, Beihang University, No.37, Xueyuan Road, Haidian District, Beijing, China.
  • Chen X; Beijing Advanced Innovation Centre for Biomedical Engineering, Key Laboratory for Biomechanics and Mechanobiology of Chinese Education Ministry, School of Biological Science and Medical Engineering, Beihang University, No.37, Xueyuan Road, Haidian District, Beijing, China. Electronic address: xfchen
  • Fan Y; Beijing Advanced Innovation Centre for Biomedical Engineering, Key Laboratory for Biomechanics and Mechanobiology of Chinese Education Ministry, School of Biological Science and Medical Engineering, Beihang University, No.37, Xueyuan Road, Haidian District, Beijing, China; School of Engineering Medi
Biomaterials ; 301: 122215, 2023 10.
Article em En | MEDLINE | ID: mdl-37406601
ABSTRACT
Reprogramming of somatic cells into the pluripotent state is stochastic and inefficient using the conventional culture plates. Novel micro-culture systems employing precisely controlled biophysical cues can improve the reprogramming efficiencies dramatically. Here we perform iPSC induction on our previously developed superhydrophobic microwell array chip (SMAR-chip) where cells undergo distinctive morphology change, switching from 2D monolayers to 3D clumps, and develop into bona fide colonies in more than 90% of the microwells. The PDMS substrate, together with the microwell structure and the superhydrophobic layer constitute a well-controlled microenvironment favorable for the morphogenesis and pluripotency induction. Investigation of the molecular roadmap demonstrates that the SMAR-chip promotes the transition from the initiation phase to the maturation phase and overcomes the roadblocks for reprogramming. In addition, the SMAR-chip also promotes the reprogramming of human cells, opening our method for translational applications. In summary, our study provides a novel platform for efficient cell reprogramming and emphasizes the advantages of employing the insoluble microenvironmental cues for the precise control of cell fate conversion.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Reprogramação Celular / Células-Tronco Pluripotentes Induzidas Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Reprogramação Celular / Células-Tronco Pluripotentes Induzidas Idioma: En Ano de publicação: 2023 Tipo de documento: Article