Your browser doesn't support javascript.
loading
Fluoroquinolone resistance does not facilitate phage Φ13 integration or excision in Staphylococcus aureus.
Leinweber, Helena; Sieber, Raphael N; Bojer, Martin S; Larsen, Jesper; Ingmer, Hanne.
Afiliação
  • Leinweber H; Department of Veterinary and Animal Sciences, University of Copenhagen, Stigbøjlen 4, 1870 Copenhagen, Denmark.
  • Sieber RN; Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Artillerivej 5, 2300 Copenhagen, Denmark.
  • Bojer MS; Department of Veterinary and Animal Sciences, University of Copenhagen, Stigbøjlen 4, 1870 Copenhagen, Denmark.
  • Larsen J; Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Artillerivej 5, 2300 Copenhagen, Denmark.
  • Ingmer H; Department of Veterinary and Animal Sciences, University of Copenhagen, Stigbøjlen 4, 1870 Copenhagen, Denmark.
Access Microbiol ; 5(6)2023.
Article em En | MEDLINE | ID: mdl-37424547
ABSTRACT
Prophages of the ΦSa3int family are commonly found in human-associated strains of Staphylococcus aureus where they encode factors for evading the human innate immune system. In contrast, they are usually absent in livestock-associated methicillin-resistant S. aureus (LA-MRSA) strains where the phage attachment site is mutated compared to the human strains. However, ΦSa3int phages have been found in a subset of LA-MRSA strains belonging to clonal complex 398 (CC398), including a lineage that is widespread in pig farms in Northern Jutland, Denmark. This lineage contains amino acid changes in the DNA topoisomerase IV and the DNA gyrase encoded by grlA and gyrA, respectively, which have been associated with fluoroquinolone (FQ) resistance. As both of these enzymes are involved in DNA supercoiling, we speculated that the mutations might impact recombination between the ΦSa3int phage and the bacterial chromosome. To examine this, we introduced the FQ resistance mutations into S. aureus 8325-4attBLA that carry the mutated CC398-like bacterial attachment site for ΦSa3int phages. When monitoring phage integration and release of Φ13, a well-described representative of the ΦSa3int phage family, we did not observe any significant differences between the FQ-resistant mutant and the wild-type strain. Thus our results suggest that mutations in grlA and gyrA do not contribute to the presence of the ΦSa3int phages in LA-MRSA CC398.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article