Your browser doesn't support javascript.
loading
A new 3D-printed polylactic acid-bioglass composite for bone tissue engineering induces angiogenesis in vitro and in ovo.
Cichos, Simon; Schätzlein, Eva; Wiesmann-Imilowski, Nadine; Blaeser, Andreas; Henrich, Dirk; Frank, Johannes; Drees, Philipp; Gercek, Erol; Ritz, Ulrike.
Afiliação
  • Cichos S; Department of Orthopedics and Traumatology, University Medical Center Mainz, Mainz, Germany.
  • Schätzlein E; Technical University of Darmstadt, Institute for BioMedical Printing Technology, Darmstadt, Germany.
  • Wiesmann-Imilowski N; Department of Otorhinolaryngology, University Medical Center Mainz, Mainz, Germany.
  • Blaeser A; Department of Oral and Maxillofacial Surgery, University Medical Center Mainz, Mainz, Germany.
  • Henrich D; Technical University of Darmstadt, Institute for BioMedical Printing Technology, Darmstadt, Germany.
  • Frank J; Technical University of Darmstadt, Centre for Synthetic Biology, Darmstadt, Germany.
  • Drees P; Department of Trauma, Hand and Reconstructive Surgery, Goethe University Frankfurt, Frankfurt am Main, Germany.
  • Gercek E; Department of Trauma, Hand and Reconstructive Surgery, Goethe University Frankfurt, Frankfurt am Main, Germany.
  • Ritz U; Department of Orthopedics and Traumatology, University Medical Center Mainz, Mainz, Germany.
Int J Bioprint ; 9(5): 751, 2023.
Article em En | MEDLINE | ID: mdl-37457934
Large bone defects such as those that occur after trauma or resections due to cancer still are a challenge for surgeons. Main challenge in this area is to find a suitable alternative to the gold-standard therapy, which is highly risky, and a promising option is to use biomaterials manufactured by 3D printing. In former studies, we demonstrated that the combination of polylactic acid (PLA) and bioglass (BG) resulted in a stable 3D-printable material, and porous and finely structured scaffolds were printed. These scaffolds exhibited osteogenic and anti-inflammatory properties. This 3D-printed material fulfills most of the requirements described in the diamond concept of bone healing. However, the question remains as to whether it also meets the requirements concerning angiogenesis. Therefore, the aim of this study was to analyze the effects of the 3D-printed PLA-BG composite material on angiogenesis. In vitro analyses with human umbilical vein endothelial cells (HUVECs) showed a positive effect of increasing BG content on viability and gene expression of endothelial markers. This positive effect was confirmed by an enhanced vascular formation analyzed by Matrigel assay and chicken chorioallantoic membrane (CAM) assay. In this work, we demonstrated the angiogenic efficiency of a 3D-printed PLA-BG composite material. Recalling the osteogenic potential of this material demonstrated in former work, we manufactured a mechanically stable, 3D-printable, osteogenic and angiogenic material, which could be used for bone tissue engineering.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article