Your browser doesn't support javascript.
loading
Linking above and belowground carbon sequestration, soil organic matter properties, and soil health in Brazilian Atlantic Forest restoration.
Bieluczyk, Wanderlei; Asselta, Fernanda Ometto; Navroski, Deisi; Gontijo, Júlia Brandão; Venturini, Andressa Monteiro; Mendes, Lucas William; Simon, Carla Penha; Camargo, Plínio Barbosa de; Tadini, Amanda Maria; Martin-Neto, Ladislau; Bendassolli, José Albertino; Rodrigues, Ricardo Ribeiro; van der Putten, Wim H; Tsai, Siu Mui.
Afiliação
  • Bieluczyk W; University of São Paulo, Center for Nuclear Energy in Agriculture, Cell and Molecular Biology Laboratory, 303 Centenário Avenue, Piracicaba, SP, 13416-000, Brazil; University of São Paulo, Center for Nuclear Energy in Agriculture, Isotopic Ecology Laboratory, 303 Centenário Avenue, Piracicaba, SP, 1
  • Asselta FO; University of São Paulo, Center for Nuclear Energy in Agriculture, Cell and Molecular Biology Laboratory, 303 Centenário Avenue, Piracicaba, SP, 13416-000, Brazil. Electronic address: Fernanda.asselta@usp.br.
  • Navroski D; University of São Paulo, Center for Nuclear Energy in Agriculture, Cell and Molecular Biology Laboratory, 303 Centenário Avenue, Piracicaba, SP, 13416-000, Brazil. Electronic address: deisinavroski@usp.br.
  • Gontijo JB; University of São Paulo, Center for Nuclear Energy in Agriculture, Cell and Molecular Biology Laboratory, 303 Centenário Avenue, Piracicaba, SP, 13416-000, Brazil. Electronic address: juliabrandao@usp.br.
  • Venturini AM; Princeton Institute for International and Regional Studies, Princeton University, Princeton, NJ, USA; Department of Biology, Stanford University, Stanford, CA, USA. Electronic address: andressa.mv@gmail.com.
  • Mendes LW; University of São Paulo, Center for Nuclear Energy in Agriculture, Cell and Molecular Biology Laboratory, 303 Centenário Avenue, Piracicaba, SP, 13416-000, Brazil. Electronic address: lwmendes@cena.usp.br.
  • Simon CP; University of São Paulo, Center for Nuclear Energy in Agriculture, Isotopic Ecology Laboratory, 303 Centenário Avenue, Piracicaba, SP, 13416-000, Brazil. Electronic address: carlasimon@usp.br.
  • Camargo PB; University of São Paulo, Center for Nuclear Energy in Agriculture, Isotopic Ecology Laboratory, 303 Centenário Avenue, Piracicaba, SP, 13416-000, Brazil. Electronic address: pcamargo@cena.usp.br.
  • Tadini AM; Brazilian Agricultural Research Corporation, Embrapa Instrumentation, 1452 XV de Novembro Street, São Carlos, SP, 13560-970, Brazil. Electronic address: amandatadini@hotmail.com.
  • Martin-Neto L; Brazilian Agricultural Research Corporation, Embrapa Instrumentation, 1452 XV de Novembro Street, São Carlos, SP, 13560-970, Brazil. Electronic address: ladislau.martin@embrapa.br.
  • Bendassolli JA; University of São Paulo, Center for Nuclear Energy in Agriculture, Stable Isotope Laboratory, 303 Centenário Avenue, Piracicaba, SP, 13416-000, Brazil. Electronic address: jab@cena.usp.br.
  • Rodrigues RR; University of São Paulo, "Luiz de Queiroz" College of Agriculture, Laboratory of Ecology and Forest Restoration, 11 Pádua Dias Avenue, Piracicaba, SP, 13418-900, Brazil. Electronic address: rrresalq@usp.br.
  • van der Putten WH; Netherlands Institute of Ecology, NIOO-KNAW, Department of Terrestrial Ecology, 6708, PB, Wageningen, Netherlands; Laboratory of Nematology, Wageningen University, P.O. Box 8123, 6700, ES, Wageningen, the Netherlands. Electronic address: W.vanderPutten@nioo.knaw.nl.
  • Tsai SM; University of São Paulo, Center for Nuclear Energy in Agriculture, Cell and Molecular Biology Laboratory, 303 Centenário Avenue, Piracicaba, SP, 13416-000, Brazil. Electronic address: tsai@cena.usp.br.
J Environ Manage ; 344: 118573, 2023 Oct 15.
Article em En | MEDLINE | ID: mdl-37459811
ABSTRACT
Forest restoration mitigates climate change by removing CO2 and storing C in terrestrial ecosystems. However, incomplete information on C storage in restored tropical forests often fails to capture the ecosystem's holistic C dynamics. This study provides an integrated assessment of C storage in above to belowground subsystems, its consequences for greenhouse gas (GHG) fluxes, and the quantity, quality, and origin of soil organic matter (SOM) in restored Atlantic forests in Brazil. Relations between SOM properties and soil health indicators were also explored. We examined two restorations using tree planting ('active restoration') an 8-year-old forest with green manure and native trees planted in two rounds, and a 15-year-old forest with native-planted trees in one round without green manure. Restorations were compared to reformed pasture and primary forest sites. We measured C storage in soil layers (0-10, 10-20, and 20-30 cm), litter, and plants. GHG emissions were assessed using CH4 and CO2 fluxes. SOM quantity was evaluated using C and N, quality using humification index (HLIFS), and origin using δ13C and δ15N. Nine soil health indicators were interrelated with SOM attributes. The primary forest presented the highest C stocks (107.7 Mg C ha-1), followed by 15- and 8-year-old restorations and pasture with 69.8, 55.5, and 41.8 Mg C ha-1, respectively. Soil C stocks from restorations and pasture were 20% lower than primary forest. However, 8- and 15-year-old restorations stored 12.3 and 28.3 Mg ha-1 more aboveground C than pasture. The younger forest had δ13C and δ15N values of 2.1 and 1.7‰, respectively, lower than the 15-year-old forest, indicating more C derived from C3 plants and biological N fixation. Both restorations and pasture had at least 34% higher HLIFS in deeper soil layers (10-30 cm) than primary forest, indicating a lack of labile SOM. Native and 15-year-old forests exhibited higher soil methane influx (141.1 and 61.9 µg m-2 h-1). Forests outperformed pasture in most soil health indicators, with 69% of their variance explained by SOM properties. However, SOM quantity and quality regeneration in both restorations approached the pristine forest state only in the top 10 cm layer, while deeper soil retained agricultural degradation legacies. In conclusion, active restoration of the Atlantic Forest is a superior approach compared to pasture reform for GHG mitigation. Nonetheless, the development of restoration techniques to facilitate labile C input into deeper soil layers (>10 cm) is needed to further improve soil multifunctionality and long-term C storage.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Solo / Gases de Efeito Estufa Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Solo / Gases de Efeito Estufa Idioma: En Ano de publicação: 2023 Tipo de documento: Article