Your browser doesn't support javascript.
loading
Accurate Simulations of Scanning Tunneling Microscope: Both Tip and Substrate States Matter.
Duan, Sai; Xu, Xin.
Afiliação
  • Duan S; Collaborative Innovation Center of Chemistry for Energy Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, MOE Key Laboratory of Computational Physical Sciences, Department of Chemistry, Fudan University, Shanghai 200433, People's Republic of China.
  • Xu X; Collaborative Innovation Center of Chemistry for Energy Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, MOE Key Laboratory of Computational Physical Sciences, Department of Chemistry, Fudan University, Shanghai 200433, People's Republic of China.
J Phys Chem Lett ; 14(29): 6726-6735, 2023 Jul 27.
Article em En | MEDLINE | ID: mdl-37470339
ABSTRACT
Scanning tunneling microscope (STM) provides an atomic-scale characterization tool. To this end, high-resolution measurements and accurate simulations must closely cooperate. Emerging experimental techniques, e.g., substrate spacers and tip modifications, suppress metallic couplings and improve the resolution. On the other hand, development of STM simulation methods was inactive in the past decade. Conventional simulations focus on the electronic structure of the substrate, often overlooking detailed descriptions of the tip states. Meanwhile, the overwhelming usage of periodic boundary conditions ensures effective simulations of only neutral systems. In this Perspective, we highlight the recent progress that takes the effects of both tip and substrate into account under either Tersoff-Hamann or Bardeen's approximation, which provides an accurate analysis of measured high-resolution STM results, uncovers underlying concepts, and rationally designs experimental protocols for important chemical systems. We hope this Perspective will stimulate broad interest in advanced STM simulations, highlighting the way forward for STM investigations that involve complex geometrical and electronic structures.

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article