Your browser doesn't support javascript.
loading
Biochar amendment for reducing the environmental impacts of reclaimed polluted sediments.
Liberati, Dario; Ahmed, Syed Wasif; Samad, Nafeesa; Mugnaioni, Roberta; Shaukat, Sundas; Muddasir, Muhammad; Marinari, Sara; De Angelis, Paolo.
Afiliação
  • Liberati D; Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), University of Tuscia, Via San Camillo de Lellis Snc, 01100, Viterbo, Italy. Electronic address: darioliberati@unitus.it.
  • Ahmed SW; Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), University of Tuscia, Via San Camillo de Lellis Snc, 01100, Viterbo, Italy.
  • Samad N; Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), University of Tuscia, Via San Camillo de Lellis Snc, 01100, Viterbo, Italy; Euro-Mediterranean Center on Climate Change (CMCC), Italy.
  • Mugnaioni R; Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), University of Tuscia, Via San Camillo de Lellis Snc, 01100, Viterbo, Italy.
  • Shaukat S; Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), University of Tuscia, Via San Camillo de Lellis Snc, 01100, Viterbo, Italy; Institute of Research on Terrestrial Ecosystems (IRET), National Research Council (CNR), Italy.
  • Muddasir M; Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), University of Tuscia, Via San Camillo de Lellis Snc, 01100, Viterbo, Italy.
  • Marinari S; Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), University of Tuscia, Via San Camillo de Lellis Snc, 01100, Viterbo, Italy.
  • De Angelis P; Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), University of Tuscia, Via San Camillo de Lellis Snc, 01100, Viterbo, Italy.
J Environ Manage ; 344: 118623, 2023 Oct 15.
Article em En | MEDLINE | ID: mdl-37481915
ABSTRACT
Dredging activities produce large amounts of polluted sediments that require adequate management strategies. Sediment reuse and relocation can involve several environmental issues, such as the release of CO2 and nitrogen compounds in the environment, the transfer of metals to plant tissues and the persistence of phytotoxic compounds. In this framework, the aim of the present work is to evaluate the use of biochar at different doses, in combination with plant growth, to reduce the environmental impacts polluted dredged sediments. Irrespective to the plant treatment, the amendment of the sediment with the lowest dose of biochar (3%) reduced by 25% the CO2 emissions of the substrate, by 89% the substrate carbon loss and by 35% the amount of nitrogen released into the environment (average values of the three plant treatments). The negative priming effect of biochar on organic matter mineralization can be responsible for the beneficial reduction of carbon and nitrogen release in the environment. The lack of similar effects observed at the higher biochar doses can depend on the low albedo of the biochar particles, causing the substrate warming (+1 °C for highest biochar dose) and accelerating the organic matter mineralization. Finally, shrub growth in combination with 3% biochar was able to offset the CO2 emission of the sediment and to reduce the amount of nitrogen lost. This work provides new insight on the potential benefit related to the biochar amendment of organic matter-rich dredged sediments, suggesting that the use of moderate dose of wood biochar in combination with shrub plantation can reduce the release of CO2 and nitrogen compounds in the environment.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Dióxido de Carbono / Carvão Vegetal Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Dióxido de Carbono / Carvão Vegetal Idioma: En Ano de publicação: 2023 Tipo de documento: Article