Your browser doesn't support javascript.
loading
Targeted Metabolomics in High Performance Sports: Differences between the Resting Metabolic Profile of Endurance- and Strength-Trained Athletes in Comparison with Sedentary Subjects over the Course of a Training Year.
Parstorfer, Mario; Poschet, Gernot; Kronsteiner, Dorothea; Brüning, Kirsten; Friedmann-Bette, Birgit.
Afiliação
  • Parstorfer M; Department of Sports Medicine, University Hospital Heidelberg, 69120 Heidelberg, Germany.
  • Poschet G; Olympic Training Centre Rhine-Neckar, 69120 Heidelberg, Germany.
  • Kronsteiner D; Centre for Organismal Studies, Heidelberg University, 69120 Heidelberg, Germany.
  • Brüning K; Institute of Medical Biometry and Informatics, University of Heidelberg, 69120 Heidelberg, Germany.
  • Friedmann-Bette B; Olympic Training Centre Rhine-Neckar, 69120 Heidelberg, Germany.
Metabolites ; 13(7)2023 Jul 10.
Article em En | MEDLINE | ID: mdl-37512540
ABSTRACT
Little is known about the metabolic differences between endurance and strength athletes in comparison with sedentary subjects under controlled conditions and about variation of the metabolome throughout one year. We hypothesized that (1) the resting metabolic profile differs between sedentary subjects and athletes and between perennially endurance- and strength-trained athletes and (2) varies throughout one year of training. We performed quantitative, targeted metabolomics (Biocrates MxP® Quant 500, Biocrates Life Sciences AG, Innsbruck, Austria) in plasma samples at rest in three groups of male adults, 12 strength-trained (weightlifters, 20 ± 3 years), 10 endurance-trained athletes (runners, 24 ± 3 years), and 12 sedentary subjects (25 ± 4 years) at the end of three training phases (regeneration, preparation, and competition) within one training year. Performance and anthropometric data showed significant (p < 0.05) differences between the groups. Metabolomic analysis revealed different resting metabolic profiles between the groups with acetylcarnitines, di- and triacylglycerols, and glycerophospho- and sphingolipids, as well as several amino acids as the most robust metabolites. Furthermore, we observed changes in free carnitine and 3-methylhistidine in strength-trained athletes throughout the training year. Regular endurance or strength training induces changes in the concentration of several metabolites associated with adaptations of the mitochondrial energy and glycolytic metabolism with concomitant changes in amino acid metabolism and cell signaling.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article