Lipid nanoparticles for siRNA delivery in cancer treatment.
J Control Release
; 361: 130-146, 2023 09.
Article
em En
| MEDLINE
| ID: mdl-37532145
RNA-based therapies, and siRNAs in particular, have attractive therapeutic potential for cancer treatment due to their ability to silence genes that are imperative for tumor progression. To be effective and solve issues related to their poor half-life and poor pharmacokinetic properties, siRNAs require adequate drug delivery systems that protect them from degradation and allow intracellular delivery. Among the various delivery vehicles available, lipid nanoparticles have emerged as the leading choice. These nanoparticles consist of cholesterol, phospholipids, PEG-lipids and most importantly ionizable cationic lipids. These ionizable lipids enable the binding of negatively charged siRNA, resulting in the formation of stable and neutral lipid nanoparticles with exceptionally high encapsulation efficiency. Lipid nanoparticles have demonstrated their effectiveness and versatility in delivering not only siRNAs but also multiple RNA molecules, contributing to their remarkable success. Furthermore, the advancement of efficient manufacturing techniques such as microfluidics, enables the rapid mixing of two miscible solvents without the need for shear forces. This facilitates the reproducible production of lipid nanoparticles and holds enormous potential for scalability. This is shown by the increasing number of preclinical and clinical trials evaluating the potential use of siRNA-LNPs for the treatment of solid and hematological tumors as well as in cancer immunotherapy. In this review, we provide an overview of the progress made on siRNA-LNP development for cancer treatment and outline the current preclinical and clinical landscape in this area. Finally, the translational challenges required to bring siRNA-LNPs further into the clinic are also discussed.
Palavras-chave
Texto completo:
1
Base de dados:
MEDLINE
Assunto principal:
Nanopartículas
/
Neoplasias
Idioma:
En
Ano de publicação:
2023
Tipo de documento:
Article