Can AI-based body composition assessment outperform body surface area in predicting dose-limiting toxicities for colonic cancer patients on chemotherapy?
J Cancer Res Clin Oncol
; 149(15): 13915-13923, 2023 Nov.
Article
em En
| MEDLINE
| ID: mdl-37540253
PURPOSE: Gold standard chemotherapy dosage is based on body surface area (BSA); however many patients experience dose-limiting toxicities (DLT). We aimed to evaluate the effectiveness of BSA, two-dimensional (2D) and three-dimensional (3D) body composition (BC) measurements derived from Lumbar 3 vertebra (L3) computed tomography (CT) slices, in predicting DLT in colon cancer patients. METHODS: 203 patients (60.87 ± 12.42 years; 97 males, 47.8%) receiving adjuvant chemotherapy (Oxaliplatin and/or 5-Fluorouracil) were retrospectively evaluated. An artificial intelligence segmentation model was used to extract 2D and 3D body composition measurements from each patients' single mid-L3 CT slice as well as multiple-L3 CT scans to produce a 3D BC report. DLT was defined as any incidence of dose reduction or discontinuation due to chemotherapy toxicities. A receiver operating characteristic (ROC) analysis was performed on BSA and individual body composition measurements to demonstrate their predictive performance. RESULTS: A total of 120 (59.1%) patients experienced DLT. Age and BSA did not vary significantly between DLT and non-DLT group. Females were significantly more likely to experience DLT (p = 4.9 × 10-3). In all patients, the predictive effectiveness of 2D body composition measurements (females: AUC = 0.50-0.54; males: AUC = 0.50-0.61) was equivalent to that of BSA (females: AUC = 0.49; males: AUC = 0.58). The L3 3D skeletal muscle volume was the most predictive indicator of DLT (AUC of 0.66 in females and 0.64 in males). CONCLUSION: Compared to BSA and 2D body composition measurements, 3D L3 body composition measurements had greater potential to predict DLT in CRC patients receiving chemotherapy and this was sex dependent.
Texto completo:
1
Base de dados:
MEDLINE
Idioma:
En
Ano de publicação:
2023
Tipo de documento:
Article