Your browser doesn't support javascript.
loading
Elucidating the adsorption of 2-Mercaptopyridine drug on the aluminum phosphide (Al12P12) nanocage: A DFT study.
Rady, Al-Shimaa S M; Moussa, Nayra A M; Mohamed, Lamiaa A; Sidhom, Peter A; Sayed, Shaban R M; Abd El-Rahman, Mohamed K; Dabbish, Eslam; Shoeib, Tamer; Ibrahim, Mahmoud A A.
Afiliação
  • Rady ASM; Computational Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University, Minia, 61519, Egypt.
  • Moussa NAM; Computational Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University, Minia, 61519, Egypt.
  • Mohamed LA; Computational Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University, Minia, 61519, Egypt.
  • Sidhom PA; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta, 31527, Egypt.
  • Sayed SRM; Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia.
  • Abd El-Rahman MK; Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA, 02138, USA.
  • Dabbish E; Department of Chemistry, The American University in Cairo, New Cairo, 11835, Egypt.
  • Shoeib T; Department of Chemistry, The American University in Cairo, New Cairo, 11835, Egypt.
  • Ibrahim MAA; Computational Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University, Minia, 61519, Egypt.
Heliyon ; 9(8): e18690, 2023 Aug.
Article em En | MEDLINE | ID: mdl-37560653
Adsorption amplitude of the aluminum phosphide (Al12P12) nanocage toward the 2-Mercaptopyridine (MCP) drug was herein monitored based on density functional theory (DFT) calculations. The adsorption process through MCP⋅⋅⋅Al12P12 complex in various configurations was elucidated by means of adsorption (Eads) energies. According to the energetic affirmations, the Al12P12 nanocage demonstrated potential versatility toward adsorbing the MCP drug within the investigated configurations and exhibited significant negative adsorption energies up to -27.71 kcal/mol. Upon the results of SAPT analysis, the electrostatic forces showed the highest contributions to the overall adsorption process with energetic values up to -74.36 kcal/mol. Concurrently, variations of molecular orbitals distribution along with alterations in the energy gap (Egap) and Fermi level (EFL) of the studied nanocage were denoted after adsorbing the MCP drug. The favorable impact of water solvent within the MCP⋅⋅⋅Al12P12 complexes was unveiled and confirmed by negative solvation energy (ΔEsolv) values up to -17.75 kcal/mol. According to thermodynamic parameters, the spontaneous and exothermic natures of the considered adsorption process were proclaimed by negative values of ΔG and ΔH parameters. Significant changes in the IR and Raman peaks, along with the appearance of new peaks, were noticed, confirming the occurrence of the targeted adsorption process. Furthermore, the adsorption features of the MCP drug on the Al12N12 nanocage were elucidated and compared to the Al12P12 analog. The obtained results demonstrated the higher preferability of Al12P12 nanocage than the Al12N12 candidate towards adsorbing the MCP drug without structural distortion.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article