Your browser doesn't support javascript.
loading
Oxygen Plasma Induced Nanochannels for Creating Bimetallic Hollow Nanocrystals.
Wu, Wen-Ya; Wu, Sida; Tjiu, Weng Weei; Tan, Hui Ru; Leong, Fong Yew; Lim, Poh Chong; Wang, Suxi; Jiang, Wenbin; Ji, Rong; Zhu, Qiang; Bosman, Michel; Yan, Qingyu; Aabdin, Zainul.
Afiliação
  • Wu WY; Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore.
  • Wu S; Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, #03-09 EA, Singapore 117575, Republic of Singapore.
  • Tjiu WW; Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore.
  • Tan HR; Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore.
  • Leong FY; Institute of High Performance Computing (IHPC), Agency for Science, Technology and Research (A*STAR), 1 Fusionopolis Way, Connexis, #16-16, Singapore 138632, Republic of Singapore.
  • Lim PC; Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore.
  • Wang S; Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore.
  • Jiang W; Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore.
  • Ji R; Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore.
  • Zhu Q; Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore.
  • Bosman M; Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Republic of Singapore.
  • Yan Q; School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Republic of Singapore.
  • Aabdin Z; Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore.
ACS Nano ; 17(17): 17536-17544, 2023 Sep 12.
Article em En | MEDLINE | ID: mdl-37611075
Platinum-based metal catalysts are considered excellent converters in various catalytic reactions, particularly in fuel cell applications. The atomic structure at the nanocrystal surface and the metal interface both influence the catalytic performance, controlling the efficiency of the electrochemical reactions. Here we report the synthesis of Ag/Pt and Ag/Pd core/shell nanocrystals and insight into the formation mechanism of these bimetallic core/shell nanocrystals when undergoing oxygen plasma treatment. We carefully designed the oxidation treatment that determines the structural and compositional evolution. The accelerated oxidation-triggered diffusion of Ag toward the outer metal shell leads to the Kirkendall effect. After prolonged oxygen plasma treatment, most core/shell nanocrystals evolve into hollow spheres. At the same time, a minor fraction of the metal remains unchanged with a well-protected Ag core and a monocrystalline Pt or Pd shell. We hypothesize that the O2 plasma disturbs the Pt or Pd shell surface and introduces active O species that react with the diffused Ag from the inside out. Based on EDX elemental mapping, combined with several electron microscopic techniques, we deduced the formation mechanism of the hollow structures to be as follows: (I) the oxidation of Ag within the Pt or Pd lattice causes a disrupted crystal lattice of Pt or Pd; (II) nanochannels arise at the defect locations on the Pt or Pd shell; (III) the remaining Ag atoms pass through these nanochannels and leave a hollow crystal behind. Our findings deepen the understanding of interface dynamics of bimetallic nanostructured catalysts under an oxidative environment and unveil an alternative approach for catalyst pretreatment.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article