Conserved and unique functions of NIN-like proteins in nitrate sensing and signaling.
Plant Sci
; 336: 111842, 2023 Nov.
Article
em En
| MEDLINE
| ID: mdl-37633494
Nitrogen is the most abundant element in the atmosphere and serves as the foundation block of life, including plants on earth. Unlike carbon fixation through photosynthesis, plants rely heavily on external supports to acquire nitrogen. To this end, plants have adapted various strategies such as forming mutualistic relationships with nitrogen-fixing bacteria and evolving a large regulatory network that includes multiple transporters, sensors, and transcription factors for fine-tuning nitrate sensing and signaling. Nodule Inception (NIN) and NIN-like protein (NLP) are central in this network by executing multiple functions such as initiating and regulating the nodule symbiosis for nitrogen fixation, acting as the intracellular sensor to monitor the nitrate fluctuations in the environment, and activating the transcription of nitrate-responsive genes for optimal nitrogen uptake, assimilation, and usage. The involvement of NLPs in intracellular nitrate binding and early nitrate responses highlight their pivotal role in the primary nitrate response (PNR). Genome-wide reprogramming in response to nitrate by NLP is highly transient and rapid, requiring regulation in a precise and dynamic manner. This review aims to summarize recent progress in the study of NIN/NLP for a better understanding of the molecular basis of their roles and regulations in nitrate sensing and signaling, with the hope of shedding light on increasing biological nitrogen fixation and improving nitrogen use efficiency (NUE) to minimize fertilizer input in agriculture.
Texto completo:
1
Base de dados:
MEDLINE
Idioma:
En
Ano de publicação:
2023
Tipo de documento:
Article