Your browser doesn't support javascript.
loading
Quantum-enhanced sensing on optical transitions through finite-range interactions.
Franke, Johannes; Muleady, Sean R; Kaubruegger, Raphael; Kranzl, Florian; Blatt, Rainer; Rey, Ana Maria; Joshi, Manoj K; Roos, Christian F.
Afiliação
  • Franke J; Institut für Experimentalphysik, Universität Innsbruck, Innsbruck, Austria.
  • Muleady SR; Institut für Quantenoptik und Quanteninformation, Österreichische Akademie der Wissenschaften, Innsbruck, Austria.
  • Kaubruegger R; JILA, NIST and Department of Physics, University of Colorado, Boulder, CO, USA.
  • Kranzl F; Center for Theory of Quantum Matter, University of Colorado, Boulder, CO, USA.
  • Blatt R; Institut für Quantenoptik und Quanteninformation, Österreichische Akademie der Wissenschaften, Innsbruck, Austria.
  • Rey AM; Institut für Theoretische Physik, Universität Innsbruck, Innsbruck, Austria.
  • Joshi MK; Institut für Experimentalphysik, Universität Innsbruck, Innsbruck, Austria.
  • Roos CF; Institut für Quantenoptik und Quanteninformation, Österreichische Akademie der Wissenschaften, Innsbruck, Austria.
Nature ; 621(7980): 740-745, 2023 Sep.
Article em En | MEDLINE | ID: mdl-37648868
ABSTRACT
The control over quantum states in atomic systems has led to the most precise optical atomic clocks so far1-3. Their sensitivity is bounded at present by the standard quantum limit, a fundamental floor set by quantum mechanics for uncorrelated particles, which can-nevertheless-be overcome when operated with entangled particles. Yet demonstrating a quantum advantage in real-world sensors is extremely challenging. Here we illustrate a pathway for harnessing large-scale entanglement in an optical transition using 1D chains of up to 51 ions with interactions that decay as a power-law function of the ion separation. We show that our sensor can emulate many features of the one-axis-twisting (OAT) model, an iconic, fully connected model known to generate scalable squeezing4 and Greenberger-Horne-Zeilinger-like states5-8. The collective nature of the state manifests itself in the preservation of the total transverse magnetization, the reduced growth of the structure factor, that is, spin-wave excitations (SWE), at finite momenta, the generation of spin squeezing comparable with OAT (a Wineland parameter9,10 of -3.9 ± 0.3 dB for only N = 12 ions) and the development of non-Gaussian states in the form of multi-headed cat states in the Q-distribution. We demonstrate the metrological utility of the states in a Ramsey-type interferometer, in which we reduce the measurement uncertainty by -3.2 ± 0.5 dB below the standard quantum limit for N = 51 ions.

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article