Your browser doesn't support javascript.
loading
Hybridizing machine learning in survival analysis of cardiac PET/CT imaging.
Juarez-Orozco, Luis Eduardo; Niemi, Mikael; Yeung, Ming Wai; Benjamins, Jan Walter; Maaniitty, Teemu; Teuho, Jarmo; Saraste, Antti; Knuuti, Juhani; van der Harst, Pim; Klén, Riku.
Afiliação
  • Juarez-Orozco LE; Department of Cardiology, Division Heart & Lungs, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands. l.e.juarez.orozco@gmail.com.
  • Niemi M; Department of Cardiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands. l.e.juarez.orozco@gmail.com.
  • Yeung MW; Turku PET Centre, University of Turku and Turku University Hospital, Kiinamyllynkatu 4-8, 20520, Turku, Finland. l.e.juarez.orozco@gmail.com.
  • Benjamins JW; Turku PET Centre, University of Turku and Turku University Hospital, Kiinamyllynkatu 4-8, 20520, Turku, Finland.
  • Maaniitty T; Department of Cardiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
  • Teuho J; Department of Cardiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
  • Saraste A; Turku PET Centre, University of Turku and Turku University Hospital, Kiinamyllynkatu 4-8, 20520, Turku, Finland.
  • Knuuti J; Turku PET Centre, University of Turku and Turku University Hospital, Kiinamyllynkatu 4-8, 20520, Turku, Finland.
  • van der Harst P; Turku PET Centre, University of Turku and Turku University Hospital, Kiinamyllynkatu 4-8, 20520, Turku, Finland.
  • Klén R; Heart Center, Turku University Hospital, Turku, Finland.
J Nucl Cardiol ; 30(6): 2750-2759, 2023 Dec.
Article em En | MEDLINE | ID: mdl-37656345
BACKGROUND: Machine Learning (ML) allows integration of the numerous variables delivered by cardiac PET/CT, while traditional survival analysis can provide explainable prognostic estimates from a restricted number of input variables. We implemented a hybrid ML-and-survival analysis of multimodal PET/CT data to identify patients who developed myocardial infarction (MI) or death in long-term follow up. METHODS: Data from 739 intermediate risk patients who underwent coronary CT and selectively stress 15O-water-PET perfusion were analyzed for the occurrence of MI and all-cause mortality. Images were evaluated segmentally for atherosclerosis and absolute myocardial perfusion through 75 variables that were integrated through ML into an ML-CCTA and an ML-PET score. These scores were then modeled along with clinical variables through Cox regression. This hybridized model was compared against an expert interpretation-based and a calcium score-based model. RESULTS: Compared with expert- and calcium score-based models, the hybridized ML-survival model showed the highest performance (CI .81 vs .71 and .64). The strongest predictor for outcomes was the ML-CCTA score. CONCLUSION: Prognostic modeling of PET/CT data for the long-term occurrence of adverse events may be improved through ML imaging score integration and subsequent traditional survival analysis with clinical variables. This hybridization of methods offers an alternative to traditional survival modeling of conventional expert image scoring and interpretation.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Doença da Artéria Coronariana / Imagem de Perfusão do Miocárdio / Infarto do Miocárdio Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Doença da Artéria Coronariana / Imagem de Perfusão do Miocárdio / Infarto do Miocárdio Idioma: En Ano de publicação: 2023 Tipo de documento: Article