Dynamically Regulating Glucose Uptake to Reduce Overflow Metabolism with a Quorum-Sensing Circuit for the Efficient Synthesis of d-Pantothenic Acid in Bacillus subtilis.
ACS Synth Biol
; 12(10): 2983-2995, 2023 10 20.
Article
em En
| MEDLINE
| ID: mdl-37664894
In response to a high concentration of glucose, Bacillus subtilis, a microbial chassis for producing many industrial metabolites, rapidly takes up glucose using the phosphotransferase system (PTS), leading to overflow metabolism, a common phenomenon observed in many bacteria. Although overflow metabolism affects cell growth and reduces the production of many metabolites, effective strategies that reduce overflow metabolism while maintaining normal cell growth remain to be developed. Here, we used a quorum sensing (QS)-mediated circuit to tune the glucose uptake rate and thereby relieve overflow metabolism in an engineered B. subtilis for producing d-pantothenic acid (DPA). A low-efficiency non-PTS system was used for glucose uptake at the early growth stages to avoid a rapid glycolytic flux, while an efficient PTS system, which was activated by a QS circuit, was automatically activated at the late growth stages after surpassing a threshold cell density. This strategy was successfully applied as a modular metabolic engineering process for the high production of DPA. By enhancing the translation levels of key enzymes (3-methyl-2-oxobutanoate hydroxymethytransferase, pantothenate synthetase, aspartate 1-decarboxylase proenzyme, 2-dehydropantoate 2-reductase, dihydroxy-acid dehydratase, and acetolactate synthase) with engineered 5'-untranslated regions (UTRs) of mRNAs, the metabolic flux was promoted in the direction of DPA production, elevating the yield of DPA to 5.11 g/L in shake flasks. Finally, the engineered B. subtilis produced 21.52 g/L of DPA in fed-batch fermentations. Our work not only revealed a new strategy for reducing overflow metabolism by adjusting the glucose uptake rate in combination with promoting the translation of key metabolic enzymes through engineering the 5'-UTR of mRNAs but also showed its power in promoting the bioproduction of DPA in B. subtilis, exhibiting promising application prospects.
Palavras-chave
Texto completo:
1
Base de dados:
MEDLINE
Assunto principal:
Ácido Pantotênico
/
Bacillus subtilis
Idioma:
En
Ano de publicação:
2023
Tipo de documento:
Article