Your browser doesn't support javascript.
loading
Thermal niche breadth and their relationship with sturnira bat species diversification.
Carballo-Morales, Jorge D; Saldaña-Vázquez, Romeo A; Villalobos, Federico; Herrera-Alsina, Leonel.
Afiliação
  • Carballo-Morales JD; Laboratorio de Sistemática, Genética y Evolución, Escuela de Ciencias Biológicas, Universidad Nacional, Heredia, CP 3000, Costa Rica; Department of Biological Sciences, Towson University, Towson, MD, 21252, USA. Electronic address: jorge.carballo301094@gmail.com.
  • Saldaña-Vázquez RA; Instituto de Investigaciones en Medio Ambiente Xabier Gorostiaga, S.J. Universidad Iberoamericana Puebla, Blvd. Del Niño Poblano No. 2901, Col. Reserva Territorial Atlixcáyotl, San Andrés Cholula, Puebla, C.P.72820, Mexico. Electronic address: romeoalberto.saldana@iberopuebla.mx.
  • Villalobos F; Laboratorio de Sistemática, Genética y Evolución, Escuela de Ciencias Biológicas, Universidad Nacional, Heredia, CP 3000, Costa Rica. Electronic address: federico.villalobos.brenes@una.ac.cr.
  • Herrera-Alsina L; School of Biological Sciences, University of Aberdeen, Aberdeen, Scotland, UK. Electronic address: leonel.herreraalsina@abdn.ac.uk.
J Therm Biol ; 117: 103697, 2023 Oct.
Article em En | MEDLINE | ID: mdl-37683357
ABSTRACT
The interaction between climatic conditions and the ability of organisms to maintain homeostasis regulates the distribution of species on the planet. However, its influence on macroevolutionary dynamics is not well understood. It has been suggested that diversification rates will be different in lineages with narrow thermal niches (specialists) to diversification rates in generalist lineages, but the evidence for this is elusive. Here, we tested this hypothesis by using the most diverse (in species richness and geographic range variation) tropical bat genus within the Phyllostomidae family. We estimated the realized thermal niche breadth of Sturnira species from their geographic range and categorized them as generalists, cold specialists, or warm specialists. We compared dynamic evolutionary models that differ in 1) niche breadth evolution, 2) parental niche breadth inheritance, and 3) whether niche breadth evolution is associated with shifts in diversification rates. Our best-performing model indicates that most Sturnira species arose as specialists in warm climates and that over time, their niche breadth broadens, and just a subset of those species becomes specialists in cold environments. We found that the evolution of realized thermal niche breadth causes fluctuations in per-lineage rates of diversification, where warm specialists boast the highest speciation rates. However, we found no evidence of these changes in niche neither triggering nor being a result of speciation events themselves; this suggests that diversification events in Sturnira could instead depend on allopatric speciation processes such as the development of geographic barriers.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article