Your browser doesn't support javascript.
loading
Induction and metabolomic analysis of hairy roots of Atractylodes lancea.
Zhang, Chengcai; Guo, Xiuzhi; Wang, Hongyang; Dai, Xiaoyu; Yan, Binbin; Wang, Sheng; Guo, Lanping.
Afiliação
  • Zhang C; State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, People's Republic of China.
  • Guo X; State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, People's Republic of China.
  • Wang H; State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, People's Republic of China.
  • Dai X; Dexing Research and Training Center of Chinese Medical Sciences, Dexing, 334220, People's Republic of China.
  • Yan B; State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, People's Republic of China.
  • Wang S; Dexing Research and Training Center of Chinese Medical Sciences, Dexing, 334220, People's Republic of China.
  • Guo L; State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, People's Republic of China. mmcniu@163.com.
Appl Microbiol Biotechnol ; 107(21): 6655-6670, 2023 Nov.
Article em En | MEDLINE | ID: mdl-37688598
ABSTRACT
Atractylodes lancea is an important source of traditional Chinese medicines. Sesquiterpenoids are the key active compounds in A. lancea, and their presence determines the quality of the material. Hairy hoot (HR) culture is a potential method to produce medicinally active compounds industrially; however, the induction and metabolic profiling of A. lancea HR have not been reported. We found that optimal induction of A. lancea HR was achieved by Agrobacterium rhizogenes strain C58C1 using the young leaves of tissue culture seedlings in the rooting stage as explants. Ultra-performance liquid chromatography-tandem mass spectrometric analyses of the chemical compositions of HR and normal root (NR) led to the annotation of 1046 metabolites. Over 200 differentially accumulated metabolites were identified, with 41 found to be up-regulated in HR relative to NR and 179 down-regulated in HR. Specifically, atractylodin levels were higher in HR, while the levels of ß-eudesmol and hinesol were higher in NR. Metabolic pathway analyses showed a significant difference in metabolites of the shikimate acid pathway between HR and NR. Five A. lancea compounds are potential biomarkers for evaluation of HR and NR quality. This study provides an important reference for the application of HR for the production of medicinally active compounds. KEY POINTS • We established an efficient protocol for the induction of HR in A. lancea • HR was found to have a significantly higher amount of atractylodin than did NRs • Metabolic pathway analyses showed a significant difference in metabolites of the shikimate acid pathway between HR and NR.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article