Your browser doesn't support javascript.
loading
Cell diversity and plasticity during atrioventricular heart valve EMTs.
Lotto, Jeremy; Cullum, Rebecca; Drissler, Sibyl; Arostegui, Martin; Garside, Victoria C; Fuglerud, Bettina M; Clement-Ranney, Makenna; Thakur, Avinash; Underhill, T Michael; Hoodless, Pamela A.
Afiliação
  • Lotto J; Terry Fox Laboratory, BC Cancer, Vancouver, BC, Canada.
  • Cullum R; Cell and Developmental Biology Program, University of British Columbia, Vancouver, BC, Canada.
  • Drissler S; Terry Fox Laboratory, BC Cancer, Vancouver, BC, Canada.
  • Arostegui M; Terry Fox Laboratory, BC Cancer, Vancouver, BC, Canada.
  • Garside VC; Cell and Developmental Biology Program, University of British Columbia, Vancouver, BC, Canada.
  • Fuglerud BM; Biomedical Research Centre, University of British Columbia, Vancouver, BC, Canada.
  • Clement-Ranney M; Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada.
  • Thakur A; Terry Fox Laboratory, BC Cancer, Vancouver, BC, Canada.
  • Underhill TM; Cell and Developmental Biology Program, University of British Columbia, Vancouver, BC, Canada.
  • Hoodless PA; Department of Anatomy and Physiology, University of Melbourne, Melbourne, VIC, Australia.
Nat Commun ; 14(1): 5567, 2023 09 09.
Article em En | MEDLINE | ID: mdl-37689753
Epithelial-to-mesenchymal transitions (EMTs) of both endocardium and epicardium guide atrioventricular heart valve formation, but the cellular complexity and small scale of this tissue have restricted analyses. To circumvent these issues, we analyzed over 50,000 murine single-cell transcriptomes from embryonic day (E)7.75 hearts to E12.5 atrioventricular canals. We delineate mesenchymal and endocardial bifurcation during endocardial EMT, identify a distinct, transdifferentiating epicardial population during epicardial EMT, and reveal the activation of epithelial-mesenchymal plasticity during both processes. In Sox9-deficient valves, we observe increased epithelial-mesenchymal plasticity, indicating a role for SOX9 in promoting endothelial and mesenchymal cell fate decisions. Lastly, we deconvolve cell interactions guiding the initiation and progression of cardiac valve EMTs. Overall, these data reveal mechanisms of emergence of mesenchyme from endocardium or epicardium at single-cell resolution and will serve as an atlas of EMT initiation and progression with broad implications in regenerative medicine and cancer biology.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Endocárdio / Valvas Cardíacas Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Endocárdio / Valvas Cardíacas Idioma: En Ano de publicação: 2023 Tipo de documento: Article