Your browser doesn't support javascript.
loading
Development and Functional Evaluation of MDR1-expressing Microvascular Endothelial-like Cells Derived from Human iPS Cells as an In vitro Blood-brain Barrier Model.
Yamaguchi, Tomoko; Sako, Daiki; Kurosawa, Toshiki; Nishijima, Misae; Miyano, Ayaka; Kubo, Yoshiyuki; Ohtsuki, Sumio; Kawabata, Kenji; Deguchi, Yoshiharu.
Afiliação
  • Yamaguchi T; Laboratory of Cell Model for Drug Discovery, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito-Asagi, Ibaraki, 567-0085, Japan.
  • Sako D; Laboratory of Drug Disposition & Pharmacokinetics, Faculty of Pharma-Sciences, Teikyo University, 2-11-1 Kaga, Itabashi, Tokyo 173-8605, Japan.
  • Kurosawa T; Laboratory of Drug Disposition & Pharmacokinetics, Faculty of Pharma-Sciences, Teikyo University, 2-11-1 Kaga, Itabashi, Tokyo 173-8605, Japan.
  • Nishijima M; Laboratory of Cell Model for Drug Discovery, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito-Asagi, Ibaraki, 567-0085, Japan.
  • Miyano A; Department of Pharmaceutical Microbiology, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-Honmachi, Chuo-Ku, Kumamoto 862-0973, Japan.
  • Kubo Y; Laboratory of Drug Disposition & Pharmacokinetics, Faculty of Pharma-Sciences, Teikyo University, 2-11-1 Kaga, Itabashi, Tokyo 173-8605, Japan.
  • Ohtsuki S; Department of Pharmaceutical Microbiology, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-Honmachi, Chuo-Ku, Kumamoto 862-0973, Japan; Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-Honmachi, Chuo-Ku, Kumamoto 862-0973, Japan
  • Kawabata K; Laboratory of Cell Model for Drug Discovery, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito-Asagi, Ibaraki, 567-0085, Japan; Laboratory of Biomedical Innovation, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita 565-0871, Japan; Depar
  • Deguchi Y; Laboratory of Drug Disposition & Pharmacokinetics, Faculty of Pharma-Sciences, Teikyo University, 2-11-1 Kaga, Itabashi, Tokyo 173-8605, Japan. Electronic address: deguchi@pharm.teikyo-u.ac.jp.
J Pharm Sci ; 112(12): 3216-3223, 2023 12.
Article em En | MEDLINE | ID: mdl-37690777
In order to establish an in vitro model of the human blood-brain barrier (BBB), MDR1-overexpressing human induced pluripotent stem cells (hiPSCs) were generated, and they were differentiated to MDR1-expressing brain microvascular endothelial-like cells (MDR1-expressing hiPS-BMECs). MDR1-expressing hiPS-BMECs monolayers showed good barrier function in terms of tight junction protein expression and trans-epithelial electrical resistance (TEER). In sequential window acquisition of all theoretical fragment ion spectra mass spectrometry (SWATH-MS), MDR1 protein expression was markedly increased in MDR1-expressing hiPS-BMECs, whereas other ABC and SLC transporters showed almost identical expression between MDR1-expressing hiPS-BMECs and mock hiPS-BMECs, suggesting that MDR1 overexpression had little or no knock-on effect on other proteins. The basolateral-to-apical transport of MDR1 substrates, such as quinidine, [3H]digoxin and [3H]vinblastine, was higher than the apical-to-basolateral transport, and the efflux-dominant transport was attenuated by PSC833, an MDR1-specific inhibitor, indicating that MDR1-mediated efflux transport is functional. The robust MDR1 function was also supported by the efflux-dominant transports of [3H]cyclosporin A, loperamide, cetirizine, and verapamil by MDR1-expressing hiPS-BMECs. These results suggest that MDR1-expressing hiPS-BMECs can be used as an in vitro model of the human BBB.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Barreira Hematoencefálica / Células-Tronco Pluripotentes Induzidas Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Barreira Hematoencefálica / Células-Tronco Pluripotentes Induzidas Idioma: En Ano de publicação: 2023 Tipo de documento: Article