Your browser doesn't support javascript.
loading
Metal-Free Electrocatalytic Diacetoxylation of Alkenes.
Vanhoof, Jef R; De Smedt, Pieter J; Derhaeg, Jan; Ameloot, Rob; De Vos, Dirk E.
Afiliação
  • Vanhoof JR; Centre For Membrane Separations, Adsorption, Catalysis and Spectroscopy for Sustainable Solutions (cMACS), KU Leuven, Celestijnenlaan 200F p.o. box 2454, 3001, Leuven, Belgium.
  • De Smedt PJ; Centre For Membrane Separations, Adsorption, Catalysis and Spectroscopy for Sustainable Solutions (cMACS), KU Leuven, Celestijnenlaan 200F p.o. box 2454, 3001, Leuven, Belgium.
  • Derhaeg J; Centre For Membrane Separations, Adsorption, Catalysis and Spectroscopy for Sustainable Solutions (cMACS), KU Leuven, Celestijnenlaan 200F p.o. box 2454, 3001, Leuven, Belgium.
  • Ameloot R; Centre For Membrane Separations, Adsorption, Catalysis and Spectroscopy for Sustainable Solutions (cMACS), KU Leuven, Celestijnenlaan 200F p.o. box 2454, 3001, Leuven, Belgium.
  • De Vos DE; Centre For Membrane Separations, Adsorption, Catalysis and Spectroscopy for Sustainable Solutions (cMACS), KU Leuven, Celestijnenlaan 200F p.o. box 2454, 3001, Leuven, Belgium.
Angew Chem Int Ed Engl ; 62(49): e202311539, 2023 Dec 04.
Article em En | MEDLINE | ID: mdl-37724630
1,2-Dioxygenation of alkenes leads to a structural motif ubiquitous in organic synthons, natural products and active pharmaceutical ingredients. Straightforward and green synthesis protocols starting from abundant raw materials are required for facile and sustainable access to these crucial moieties. Especially industrially abundant aliphatic alkenes have proven to be arduous substrates in sustainable 1,2-dioxygenation methods. Here, we report a highly efficient electrocatalytic diacetoxylation of alkenes under ambient conditions using a simple iodobenzene mediator and acetic acid as both the solvent and an atom-efficient reactant. This transition metal-free method is applicable to a wide range of alkenes, even challenging feedstock alkenes such as ethylene and propylene, with a broad functional group tolerance and excellent faradaic efficiencies up to 87 %. In addition, this protocol can be extrapolated to alkenoic acids, resulting in cyclization of the starting materials to valuable lactone derivatives. With aromatic alkenes, a competing mechanism of direct anodic oxidation exists which enables reaction under catalyst-free conditions. The synthetic method is extensively investigated with cyclic voltammetry.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article