Your browser doesn't support javascript.
loading
Engineering of dendritic cell bispecific extracellular vesicles for tumor-targeting immunotherapy.
Xu, Fang; Jiang, Dongpeng; Xu, Jialu; Dai, Huaxing; Fan, Qin; Fei, Ziying; Wang, Beilei; Zhang, Yue; Ma, Qingle; Yang, Qianyu; Chen, Yitong; Ogunnaike, Edikan A; Chu, Jianhong; Wang, Chao.
Afiliação
  • Xu F; Laboratory for Biomaterial and Immunoengineering, Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu 215123, China.
  • Jiang D; Institute of Blood and Marrow Transplantation, National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, First Affiliated Hospital of Soochow University, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu 215123, China.
  • Xu J; Laboratory for Biomaterial and Immunoengineering, Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu 215123, China.
  • Dai H; Laboratory for Biomaterial and Immunoengineering, Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu 215123, China.
  • Fan Q; Institute of Advanced Materials (IAM) and School of Materials Science and Engineering, Nanjing University of Posts & Telecommunications, Nanjing 210000, China.
  • Fei Z; Laboratory for Biomaterial and Immunoengineering, Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu 215123, China.
  • Wang B; Laboratory for Biomaterial and Immunoengineering, Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu 215123, China.
  • Zhang Y; Laboratory for Biomaterial and Immunoengineering, Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu 215123, China.
  • Ma Q; Laboratory for Biomaterial and Immunoengineering, Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu 215123, China.
  • Yang Q; Laboratory for Biomaterial and Immunoengineering, Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu 215123, China.
  • Chen Y; Laboratory for Biomaterial and Immunoengineering, Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu 215123, China.
  • Ogunnaike EA; Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA.
  • Chu J; Institute of Blood and Marrow Transplantation, National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, First Affiliated Hospital of Soochow University, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu 215123, China. Electronic ad
  • Wang C; Laboratory for Biomaterial and Immunoengineering, Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu 215123, China. Electronic address: cwang@suda.edu.cn.
Cell Rep ; 42(10): 113138, 2023 10 31.
Article em En | MEDLINE | ID: mdl-37738123
ABSTRACT
Advances in the development of therapeutic extracellular vesicles (EVs) for cancer immunotherapy have allowed them to emerge as an alternative to cell therapy. In this proof-of-concept work, we develop bispecific EVs (BsEVs) by genetically engineering EV-producing dendritic cells (DCs) with aCD19 scFv and PD1 for targeting tumor antigens and blocking immune checkpoint proteins simultaneously. We find that these bispecific EVs (EVs-PD1-aCD19) have an impressive ability to accumulate in huCD19-expressing solid tumors following intravenous injection. In addition, EVs-PD1-aCD19 can remarkably reverse the immune landscape of the solid tumor by blocking PD-L1. Furthermore, EVs-PD1-aCD19 can also target tumor-derived EVs in circulation, which prevents the formation of a premetastatic niche in other tissues. Our technology is a demonstration of bispecific EV-based cancer immunotherapy, which may inspire treatments against various types of tumors with different surface antigens and even a patient-tailored therapy.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Vesículas Extracelulares / Neoplasias Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Vesículas Extracelulares / Neoplasias Idioma: En Ano de publicação: 2023 Tipo de documento: Article