Your browser doesn't support javascript.
loading
Myeloid-derived suppressor cells and tolerogenic dendritic cells are distinctively induced by PI3K and Wnt signaling pathways.
van Wigcheren, Glenn F; Cuenca-Escalona, Jorge; Stelloo, Suzan; Brake, Julia; Peeters, Eline; Horrevorts, Sophie K; Frölich, Siebren; Ramos-Tomillero, Iván; Wesseling-Rozendaal, Yvonne; van Herpen, Carla M L; van de Stolpe, Anja; Vermeulen, Michiel; de Vries, I Jolanda M; Figdor, Carl G; Flórez-Grau, Georgina.
Afiliação
  • van Wigcheren GF; Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, The Netherlands; Oncode Institute, The Netherlands.
  • Cuenca-Escalona J; Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, The Netherlands.
  • Stelloo S; Oncode Institute, The Netherlands; Faculty of Science, Department of Molecular Biology, Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, Nijmegen, The Netherlands.
  • Brake J; Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, The Netherlands.
  • Peeters E; Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, The Netherlands.
  • Horrevorts SK; Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, The Netherlands.
  • Frölich S; Faculty of Science, Department of Molecular Biology, Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, Nijmegen, The Netherlands.
  • Ramos-Tomillero I; Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, The Netherlands.
  • Wesseling-Rozendaal Y; Philips Research, Eindhoven, The Netherlands.
  • van Herpen CML; Department of Medical Oncology, Radboudumc, Nijmegen, The Netherlands.
  • van de Stolpe A; Philips Research, Eindhoven, The Netherlands.
  • Vermeulen M; Oncode Institute, The Netherlands; Faculty of Science, Department of Molecular Biology, Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, Nijmegen, The Netherlands.
  • de Vries IJM; Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, The Netherlands. Electronic address: jolanda.devries@radboudumc.nl.
  • Figdor CG; Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, The Netherlands; Oncode Institute, The Netherlands.
  • Flórez-Grau G; Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, The Netherlands.
J Biol Chem ; 299(11): 105276, 2023 11.
Article em En | MEDLINE | ID: mdl-37739035
ABSTRACT
Imbalanced immune responses are a prominent hallmark of cancer and autoimmunity. Myeloid cells can be overly suppressive, inhibiting protective immune responses or inactive not controlling autoreactive immune cells. Understanding the mechanisms that induce suppressive myeloid cells, such as myeloid-derived suppressor cells (MDSCs) and tolerogenic dendritic cells (TolDCs), can facilitate the development of immune-restoring therapeutic approaches. MDSCs are a major barrier for effective cancer immunotherapy by suppressing antitumor immune responses in cancer patients. TolDCs are administered to patients to promote immune tolerance with the intent to control autoimmune disease. Here, we investigated the development and suppressive/tolerogenic activity of human MDSCs and TolDCs to gain insight into signaling pathways that drive immunosuppression in these different myeloid subsets. Moreover, monocyte-derived MDSCs (M-MDSCs) generated in vitro were compared to M-MDSCs isolated from head-and-neck squamous cell carcinoma patients. PI3K-AKT signaling was identified as being crucial for the induction of human M-MDSCs. PI3K inhibition prevented the downregulation of HLA-DR and the upregulation of reactive oxygen species and MerTK. In addition, we show that the suppressive activity of dexamethasone-induced TolDCs is induced by ß-catenin-dependent Wnt signaling. The identification of PI3K-AKT and Wnt signal transduction pathways as respective inducers of the immunomodulatory capacity of M-MDSCs and TolDCs provides opportunities to overcome suppressive myeloid cells in cancer patients and optimize therapeutic application of TolDCs. Lastly, the observed similarities between generated- and patient-derived M-MDSCs support the use of in vitro-generated M-MDSCs as powerful model to investigate the functionality of human MDSCs.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Células Dendríticas / Transdução de Sinais / Fosfatidilinositol 3-Quinases / Via de Sinalização Wnt / Células Supressoras Mieloides Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Células Dendríticas / Transdução de Sinais / Fosfatidilinositol 3-Quinases / Via de Sinalização Wnt / Células Supressoras Mieloides Idioma: En Ano de publicação: 2023 Tipo de documento: Article