Your browser doesn't support javascript.
loading
Circumstellar material ejected violently by a massive star immediately before its death.
Zhang, Jujia; Lin, Han; Wang, Xiaofeng; Zhao, Zeyi; Li, Liping; Liu, Jialian; Yan, Shengyu; Xiang, Danfeng; Wang, Huijuan; Bai, Jinming.
Afiliação
  • Zhang J; Yunnan Observatories (YNAO), Chinese Academy of Sciences, Kunming 650216, China; Key Laboratory for the Structure and Evolution of Celestial Objects, Chinese Academy of Sciences, Kunming 650216, China; International Centre of Supernovae, Yunnan Key Laboratory, Kunming 650216, China. Electronic addre
  • Lin H; Yunnan Observatories (YNAO), Chinese Academy of Sciences, Kunming 650216, China; Key Laboratory for the Structure and Evolution of Celestial Objects, Chinese Academy of Sciences, Kunming 650216, China; Key Laboratory of Radio Astronomy and Technology, CAS, Beijing 100101, China.
  • Wang X; Department of Physics, Tsinghua University, Beijing 100084, China; Beijing Planetarium, Beijing Academy of Science and Technology, Beijing 100044, China. Electronic address: wang_xf@mail.tsinghua.edu.cn.
  • Zhao Z; Yunnan Observatories (YNAO), Chinese Academy of Sciences, Kunming 650216, China; Key Laboratory for the Structure and Evolution of Celestial Objects, Chinese Academy of Sciences, Kunming 650216, China; International Centre of Supernovae, Yunnan Key Laboratory, Kunming 650216, China.
  • Li L; Yunnan Observatories (YNAO), Chinese Academy of Sciences, Kunming 650216, China.
  • Liu J; Department of Physics, Tsinghua University, Beijing 100084, China.
  • Yan S; Department of Physics, Tsinghua University, Beijing 100084, China.
  • Xiang D; Department of Physics, Tsinghua University, Beijing 100084, China.
  • Wang H; National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100101, China; School of Astronomy and Space Science, University of Chinese Academy of Sciences, Beijing 101408, China.
  • Bai J; Yunnan Observatories (YNAO), Chinese Academy of Sciences, Kunming 650216, China; Key Laboratory for the Structure and Evolution of Celestial Objects, Chinese Academy of Sciences, Kunming 650216, China; International Centre of Supernovae, Yunnan Key Laboratory, Kunming 650216, China.
Sci Bull (Beijing) ; 68(21): 2548-2554, 2023 Nov 15.
Article em En | MEDLINE | ID: mdl-37743199
ABSTRACT
Type II supernovae represent the most common stellar explosions in the Universe, for which the final stage evolution of their hydrogen-rich massive progenitors towards core-collapse explosion are elusive. The recent explosion of SN 2023ixf in a very nearby galaxy, Messier 101, provides a rare opportunity to explore this longstanding issue. With the timely high-cadence flash spectra taken within 1-5 days after the explosion, we can put stringent constraints on the properties of the surrounding circumstellar material around this supernova. Based on the rapid fading of the narrow emission lines and luminosity/profile of Hα emission at very early times, we estimate that the progenitor of SN 2023ixf lost material at a mass-loss rate M≈6×10-4M⊙a-1 over the last 2-3 years before explosion. This close-by material, moving at a velocity vw≈55kms-1, accumulates a compact CSM shell at the radius smaller than 7×1014 cm from the progenitor. Given the high mass-loss rate and relatively large wind velocity presented here, together with the pre-explosion observations made about two decades ago, the progenitor of SN 2023ixf could be a short-lived yellow hypergiant that evolved from a red supergiant shortly before the explosion.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article