Your browser doesn't support javascript.
loading
A genomic platform for surveillance and antigen discovery in Plasmodium spp. using long-read amplicon sequencing.
Plaza, David Fernando; Zerebinski, Julia; Broumou, Ioanna; Lautenbach, Maximilian Julius; Ngasala, Billy; Sundling, Christopher; Färnert, Anna.
Afiliação
  • Plaza DF; Division of Infectious Diseases, Department of Medicine Solna and Center for Molecular Medicine, Karolinska Institutet, 17177 Stockholm, Sweden; Department of Infectious Diseases, Karolinska University Hospital, 17176 Stockholm, Sweden. Electronic address: david.plaza@ki.se.
  • Zerebinski J; Division of Infectious Diseases, Department of Medicine Solna and Center for Molecular Medicine, Karolinska Institutet, 17177 Stockholm, Sweden; Department of Infectious Diseases, Karolinska University Hospital, 17176 Stockholm, Sweden.
  • Broumou I; Division of Infectious Diseases, Department of Medicine Solna and Center for Molecular Medicine, Karolinska Institutet, 17177 Stockholm, Sweden; Department of Infectious Diseases, Karolinska University Hospital, 17176 Stockholm, Sweden.
  • Lautenbach MJ; Division of Infectious Diseases, Department of Medicine Solna and Center for Molecular Medicine, Karolinska Institutet, 17177 Stockholm, Sweden; Department of Infectious Diseases, Karolinska University Hospital, 17176 Stockholm, Sweden.
  • Ngasala B; Muhimbili University of Health and Allied Sciences, Dar es Salaam 57RF+V8, Tanzania.
  • Sundling C; Division of Infectious Diseases, Department of Medicine Solna and Center for Molecular Medicine, Karolinska Institutet, 17177 Stockholm, Sweden; Department of Infectious Diseases, Karolinska University Hospital, 17176 Stockholm, Sweden.
  • Färnert A; Division of Infectious Diseases, Department of Medicine Solna and Center for Molecular Medicine, Karolinska Institutet, 17177 Stockholm, Sweden; Department of Infectious Diseases, Karolinska University Hospital, 17176 Stockholm, Sweden.
Cell Rep Methods ; 3(9): 100574, 2023 09 25.
Article em En | MEDLINE | ID: mdl-37751696
ABSTRACT
Many vaccine candidate proteins in the malaria parasite Plasmodium falciparum are under strong immunological pressure and confer antigenic diversity. We present a sequencing and data analysis platform for the genomic surveillance of the insertion or deletion (indel)-rich antigens merozoite surface protein 1 (MSP1), MSP2, glutamate-rich protein (GLURP), and CSP from P. falciparum using long-read circular consensus sequencing (CCS) in multiclonal malaria isolates. Our platform uses 40 PCR primers per gene to asymmetrically barcode and identify multiclonal infections in pools of up to 384 samples. With msp2, we validated the method using 235 mock infections combining 10 synthetic variants at different concentrations and infection complexities. We applied this strategy to P. falciparum isolates from a longitudinal cohort in Tanzania. Finally, we constructed an analysis pipeline that streamlines the processing and interpretation of epidemiological and antigenic diversity data from demultiplexed FASTQ files. This platform can be easily adapted to other polymorphic antigens of interest in Plasmodium or any other human pathogen.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Plasmodium / Malária Falciparum Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Plasmodium / Malária Falciparum Idioma: En Ano de publicação: 2023 Tipo de documento: Article