Your browser doesn't support javascript.
loading
Polyvinyl Pyrrolidone Induced "Confinement Effect" on PbI2 and the Improvement on Crystallization and Thermal Stability of Perovskite.
Yu, Xi; Fang, Zhenxing; Lin, Siyuan; Wu, Shuyue; Fang, Mei; Xie, Haipeng; Kong, Deming; Zhou, Conghua.
Afiliação
  • Yu X; Hunan Key Laboratory of Super-microstructure and Ultrafast Process, Hunan Key Laboratory of Nanophotonics and Devices, Institute of Super-microstructure and Ultrafast Process in Advanced Materials (ISUPAM), School of Physics, Central South University, Changsha, Hunan, 410083, P. R. China.
  • Fang Z; Hunan Key Laboratory of Super-microstructure and Ultrafast Process, Hunan Key Laboratory of Nanophotonics and Devices, Institute of Super-microstructure and Ultrafast Process in Advanced Materials (ISUPAM), School of Physics, Central South University, Changsha, Hunan, 410083, P. R. China.
  • Lin S; Hunan Key Laboratory of Super-microstructure and Ultrafast Process, Hunan Key Laboratory of Nanophotonics and Devices, Institute of Super-microstructure and Ultrafast Process in Advanced Materials (ISUPAM), School of Physics, Central South University, Changsha, Hunan, 410083, P. R. China.
  • Wu S; Hunan Key Laboratory of Super-microstructure and Ultrafast Process, Hunan Key Laboratory of Nanophotonics and Devices, Institute of Super-microstructure and Ultrafast Process in Advanced Materials (ISUPAM), School of Physics, Central South University, Changsha, Hunan, 410083, P. R. China.
  • Fang M; Hunan Key Laboratory of Super-microstructure and Ultrafast Process, Hunan Key Laboratory of Nanophotonics and Devices, Institute of Super-microstructure and Ultrafast Process in Advanced Materials (ISUPAM), School of Physics, Central South University, Changsha, Hunan, 410083, P. R. China.
  • Xie H; Hunan Key Laboratory of Super-microstructure and Ultrafast Process, Hunan Key Laboratory of Nanophotonics and Devices, Institute of Super-microstructure and Ultrafast Process in Advanced Materials (ISUPAM), School of Physics, Central South University, Changsha, Hunan, 410083, P. R. China.
  • Kong D; Hunan Key Laboratory of Super-microstructure and Ultrafast Process, Hunan Key Laboratory of Nanophotonics and Devices, Institute of Super-microstructure and Ultrafast Process in Advanced Materials (ISUPAM), School of Physics, Central South University, Changsha, Hunan, 410083, P. R. China.
  • Zhou C; Hunan Key Laboratory of Super-microstructure and Ultrafast Process, Hunan Key Laboratory of Nanophotonics and Devices, Institute of Super-microstructure and Ultrafast Process in Advanced Materials (ISUPAM), School of Physics, Central South University, Changsha, Hunan, 410083, P. R. China.
Small ; 20(5): e2306101, 2024 Feb.
Article em En | MEDLINE | ID: mdl-37759427
Polyvinyl pyrrolidone is blended in PbI2 with varied concentration, so as to study the coarsening dynamics of perovskite during the two-step growth method. It is observed that polyvinyl pyrrolidone hinders the crystallization of PbI2 and helps to form a more amorphous PbI2 matrix, which then improves perovskite crystallization. As the blending concentration increases from 0 to 2 mM, average crystallite/grain size of perovskite increases from 40.29 nm/0.79 µm to 84.35 nm/1.02 µm while surface fluctuation decreases slightly from 25.64 to 23.96 nm. The observations are caused by the "confinement effect" brought by polyvinyl pyrrolidone on PbI2 . Elevating blending concentration of polyvinyl pyrrolidone results in smaller PbI2 crystallites and more amorphous PbI2 matrix, thus reducing the diffusion/reaction barrier between PbI2 and organic salt and favoring perovskite crystallization. As blending concentration increases from 0 to 2 mM, the device efficiency rises from 19.76 (± 0.60) % to 20.50 (± 0.89) %, with the optimized value up to 22.05%, which is further improved to 24.48% after n-Octylammonium iodide (OAI)-basing surface modification. The study enlarges the scope of "confinement effect" brought by polymer molecules, which is beneficial for efficient and stable perovskite solar cell fabrication.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article