Your browser doesn't support javascript.
loading
Use of Elasticsearch-based business intelligence tools for integration and visualization of biological data.
Scott-Boyer, Marie-Pier; Dufour, Pascal; Belleau, François; Ongaro-Carcy, Regis; Plessis, Clément; Périn, Olivier; Droit, Arnaud.
Afiliação
  • Scott-Boyer MP; Centre de Recherche du CHU de Québec-Université, Laval, Université Laval, G1V 4G2, Québec, Canada.
  • Dufour P; Centre de Recherche du CHU de Québec-Université, Laval, Université Laval, G1V 4G2, Québec, Canada.
  • Belleau F; Centre de Recherche du CHU de Québec-Université, Laval, Université Laval, G1V 4G2, Québec, Canada.
  • Ongaro-Carcy R; Centre de Recherche du CHU de Québec-Université, Laval, Université Laval, G1V 4G2, Québec, Canada.
  • Plessis C; Département de Médecine Moléculaire, G1V 0A6, Québec, Canada.
  • Périn O; Centre de Recherche du CHU de Québec-Université, Laval, Université Laval, G1V 4G2, Québec, Canada.
  • Droit A; L'Oréal Advance Research, Aulnay-sous-Bois, 93600, France.
Brief Bioinform ; 24(6)2023 09 22.
Article em En | MEDLINE | ID: mdl-37798252
The emergence of massive datasets exploring the multiple levels of molecular biology has made their analysis and knowledge transfer more complex. Flexible tools to manage big biological datasets could be of great help for standardizing the usage of developed data visualizations and integration methods. Business intelligence (BI) tools have been used in many fields as exploratory tools. They have numerous connectors to link numerous data repositories with a unified graphic interface, offering an overview of data and facilitating interpretation for decision makers. BI tools could be a flexible and user-friendly way of handling molecular biological data with interactive visualizations. However, it is rather uncommon to see such tools used for the exploration of massive and complex datasets in biological fields. We believe that two main obstacles could be the reason. Firstly, we posit that the way to import data into BI tools are not compatible with biological databases. Secondly, BI tools may not be adapted to certain particularities of complex biological data, namely, the size, the variability of datasets and the availability of specialized visualizations. This paper highlights the use of five BI tools (Elastic Kibana, Siren Investigate, Microsoft Power BI, Salesforce Tableau and Apache Superset) onto which the massive data management repository engine called Elasticsearch is compatible. Four case studies will be discussed in which these BI tools were applied on biological datasets with different characteristics. We conclude that the performance of the tools depends on the complexity of the biological questions and the size of the datasets.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Software / Conjuntos de Dados como Assunto Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Software / Conjuntos de Dados como Assunto Idioma: En Ano de publicação: 2023 Tipo de documento: Article