Your browser doesn't support javascript.
loading
Effects of 2'-fucosyllactose on the composition and metabolic activity of intestinal microbiota from piglets after in vitro fermentation.
Zhang, Yanan; Ye, Yanxin; Guo, Jiaqing; Wang, Mengting; Li, Xuan; Ren, Yuting; Zhu, Weiyun; Yu, Kaifan.
Afiliação
  • Zhang Y; Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China.
  • Ye Y; National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, China.
  • Guo J; Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China.
  • Wang M; Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China.
  • Li X; National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, China.
  • Ren Y; Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China.
  • Zhu W; National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, China.
  • Yu K; Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China.
J Sci Food Agric ; 104(3): 1553-1563, 2024 Feb.
Article em En | MEDLINE | ID: mdl-37815100
ABSTRACT

BACKGROUND:

As indigestible carbohydrates, milk oligosaccharides possess various benefits for newborns, mainly through intestinal microbiota, among which 2'-fucosyllactose (2'-FL) is the most predominant milk oligosaccharide. However, knowledge about the fermentative characteristics of 2'-FL in the gut remains limited, especially in the small intestine. The aim of this study is to explore the differential fermentability of 2'-FL by the small and large intestinal microbiota of piglets using fructo-oligosaccharide (FOS) and lactose as controls in an in vitro batch fermentation experiment. During fermentation, microbial composition was characterized along with gas production and short-chain fatty acid production.

RESULTS:

2'-Fucosyllactose showed differential fermentability in jejunal and colonic fermentation. Compared with the colon, 2'-FL produced less gas in the jejunum than in the FOS and lactose groups (P < 0.05). Meanwhile, 2'-FL exhibited a different influence on the microbial composition and metabolism in the jejunum and colon compared with FOS and lactose. In the jejunum, compared with the FOS and lactose groups, the 2'-FL group showed a higher abundance of Bacteroides, Prevotella, and Blautia, but a lower abundance of Streptococcus and Lactobacillus (P < 0.05), with a higher level of propionate and a lower level of lactate during fermentation (P < 0.05). In the colon, compared with the FOS and lactose groups, 2'-FL increased the abundance of Blautia, Faecalibacterium, and Lachnospiraceae FCS020, but decreased the abundance of Prevotella_9, Succinivibrio, and Megasphaera (P < 0.05) with an increase in acetate production (P < 0.05).

CONCLUSION:

Overall, the results suggested that the small intestinal microbiota had the potential to ferment milk oligosaccharides. Meanwhile, in comparison with FOS and lactose, 2'-FL selectively stimulated the growth of propionate-producing bacteria in the jejunum and acetate-producing bacteria in the colon. These results demonstrated the differences in fermentation properties of 2'-FL by small and large intestinal microbiota and provided new evidence for the application of 2'-FL in optimizing gut microbiota. © 2023 Society of Chemical Industry.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Microbioma Gastrointestinal Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Microbioma Gastrointestinal Idioma: En Ano de publicação: 2024 Tipo de documento: Article