Your browser doesn't support javascript.
loading
Drug repositioning strategy for the identification of novel telomere-damaging agents: A role for NAMPT inhibitors.
Rizzo, Angela; Maresca, Carmen; D'Angelo, Carmen; Porru, Manuela; Di Vito, Serena; Salvati, Erica; Sacconi, Andrea; Berardinelli, Francesco; Sgura, Antonella; Kuznetsov, Sergey; Potdar, Swapnil; Hassinen, Antti; Stoppacciaro, Antonella; Zizza, Pasquale; Biroccio, Annamaria.
Afiliação
  • Rizzo A; IRCCS-Regina Elena National Cancer Institute, Translational Oncology Research Unit, Rome, Italy.
  • Maresca C; IRCCS-Regina Elena National Cancer Institute, Translational Oncology Research Unit, Rome, Italy.
  • D'Angelo C; IRCCS-Regina Elena National Cancer Institute, Translational Oncology Research Unit, Rome, Italy.
  • Porru M; IRCCS-Regina Elena National Cancer Institute, Translational Oncology Research Unit, Rome, Italy.
  • Di Vito S; IRCCS-Regina Elena National Cancer Institute, Translational Oncology Research Unit, Rome, Italy.
  • Salvati E; Institute of Molecular Biology and Pathology, National Research Council, Rome, Italy.
  • Sacconi A; IRCCS-Regina Elena National Cancer Institute, Clinical Trial Center, Biostatistics and Bioinformatics Unit, Rome, Italy.
  • Berardinelli F; Department of science, "Roma Tre" University, Rome, Italy.
  • Sgura A; Department of science, "Roma Tre" University, Rome, Italy.
  • Kuznetsov S; Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland.
  • Potdar S; Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland.
  • Hassinen A; Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland.
  • Stoppacciaro A; Department of Clinical and Molecular Medicine, Sant'Andrea Hospital, Sapienza University of Rome, Rome, Italy.
  • Zizza P; IRCCS-Regina Elena National Cancer Institute, Translational Oncology Research Unit, Rome, Italy.
  • Biroccio A; IRCCS-Regina Elena National Cancer Institute, Translational Oncology Research Unit, Rome, Italy.
Aging Cell ; 22(11): e13944, 2023 11.
Article em En | MEDLINE | ID: mdl-37858982
ABSTRACT
Drug repositioning strategy represents a valid tool to accelerate the pharmacological development through the identification of new applications for already existing compounds. In this view, we aimed at discovering molecules able to trigger telomere-localized DNA damage and tumor cell death. By applying an automated high-content spinning-disk microscopy, we performed a screening aimed at identifying, on a library of 527 drugs, molecules able to negatively affect the expression of TRF2, a key protein in telomere maintenance. FK866, resulting from the screening as the best candidate hit, was then validated at biochemical and molecular levels and the mechanism underlying its activity in telomere deprotection was elucidated both in vitro and in vivo. The results of this study allow us to discover a novel role of FK866 in promoting, through the production of reactive oxygen species, telomere loss and deprotection, two events leading to an accumulation of DNA damage and tumor cell death. The ability of FK866 to induce telomere damage and apoptosis was also demonstrated in advanced preclinical models evidencing the antitumoral activity of FK866 in triple-negative breast cancer-a particularly aggressive breast cancer subtype still orphan of targeted therapies and characterized by high expression levels of both NAMPT and TRF2. Overall, our findings pave the way to the development of novel anticancer strategies to counteract triple-negative breast cancer, based on the use of telomere deprotecting agents, including NAMPT inhibitors, that would rapidly progress from bench to bedside.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Neoplasias de Mama Triplo Negativas Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Neoplasias de Mama Triplo Negativas Idioma: En Ano de publicação: 2023 Tipo de documento: Article