Your browser doesn't support javascript.
loading
Surface Energy Engineering of Buried Interface for Highly Stable Perovskite Solar Cells with Efficiency Over 25.
Su, Hang; Xu, Zhuo; He, Xilai; Yao, Yuying; Zheng, Xinxin; She, Yutong; Zhu, Yujie; Zhang, Jing; Liu, Shengzhong Frank.
Afiliação
  • Su H; Dalian National Laboratory for Clean Energy, iChEM, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, P. R. China.
  • Xu Z; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China.
  • He X; Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, Institute for Adv. Energy Mater., School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, Sha
  • Yao Y; Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, Institute for Adv. Energy Mater., School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, Sha
  • Zheng X; State key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi´an, 710072, P. R. China.
  • She Y; Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, Institute for Adv. Energy Mater., School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, Sha
  • Zhu Y; Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, Institute for Adv. Energy Mater., School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, Sha
  • Zhang J; Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, Institute for Adv. Energy Mater., School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, Sha
  • Liu SF; Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, Institute for Adv. Energy Mater., School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, Sha
Adv Mater ; 36(2): e2306724, 2024 Jan.
Article em En | MEDLINE | ID: mdl-37863645
ABSTRACT
The abundant oxygen-related defects (e.g., O vacancies, O-H) in the TiO2 electron transport layer results in high surface energy, which is detrimental to effective carrier extraction and seriously impairs the photovoltaic performance and stability of perovskite solar cells. Here, novel surface energy engineering (SEE) is developed by applying a surfactant of heptadecafluorooctanesulfonate tetraethylammonium (HFSTA) on the surface of the TiO2 . Theoretical calculations show that the HFSTA-TiO2 is less prone to form O vacancies, leading to lower surface energy, thus improving the carrier-extraction efficiency. The experimental results show that superior perovskite film is obtained due to the reduced heterogeneous nucleation sites and improved crystallization process on the modified TiO2 . Furthermore, the flexible long alkyl chains in HFSTA considerably relieve the compressive stresses at the buried interface. By combining the passivation of TiO2 , crystallization process modulation, and stress relief, a champion PCE up to 25.03% is achieved. The device without encapsulation sustains 92.2% of its initial PCE after more than 2500 h storage under air ambient with relative humidity of 25-30%. The SEE of a buried interface paves a new way toward high-efficiency, stable perovskite solar cells.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article