Your browser doesn't support javascript.
loading
Sonophotocatalytic water splitting by BaTiO3@SrTiO3 core shell nanowires.
Mohan, Harshavardhan; Vadivel, Sethumathavan; Shin, Taeho.
Afiliação
  • Mohan H; Department of Chemistry, Research Institute of Physics and Chemistry, Jeonbuk National University, Jeonju 54896, Republic of Korea.
  • Vadivel S; Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu 603202, India.
  • Shin T; Department of Chemistry, Research Institute of Physics and Chemistry, Jeonbuk National University, Jeonju 54896, Republic of Korea. Electronic address: shin@jbnu.edu.
Ultrason Sonochem ; 101: 106650, 2023 Dec.
Article em En | MEDLINE | ID: mdl-37866137
ABSTRACT
Sonophotocatalysis has garnered significant attention due to its potential to enhance advanced oxidation processes, particularly water splitting, by employing materials with combined sonocatalytic and photocatalytic properties. In this study, we synthesized and investigated core-shell BaTiO3@SrTiO3 nanowires (BST NWs) with varying Sr/Ba molar ratios (2.57.5, 5.05.0, 7.52.5 mM, denoted as BST-1, BST-2, and BST-3, respectively) as catalysts for hydrogen production through water splitting. The piezoelectric nanowires demonstrated hydrogen evolution via both sonocatalysis and photocatalysis. In the sonophotocatalysis process, the ultrasonic vibration induced mechanical forces on the BST nanowires, thereby establishing a built-in electric field. This built-in electric field facilitated the effective separation of photo-generated charge carriers and prolonged their lifetimes, leading to a synergistic enhancement of hydrogen evolution. The pristine BaTiO3 and SrTiO3 nanowires exhibited relatively low hydrogen evolution rates (HER) of 7.0 and 6.0 µmol·g-1min-1, respectively. In contrast, the core-shell nanowires exhibited a substantial improvement in the hydrogen evolution rate. The HER increased with the addition of Sr, and BST-1, BST-2, and BST-3 achieved HERs of 12.0, 13.5, and 18.0 µmol·g-1min-1, respectively. The superior performance of BST-3 nanowires can be attributed to their highest piezoelectric potential and largest surface area. Additionally, BST-3 nanowires demonstrated remarkable stability over multiple cycles, validating their practical applicability as efficient photocatalysts.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article