Your browser doesn't support javascript.
loading
An analysis of impact load and fragmentation dimension to explore energy dissipation patterns in coal crushing.
Wang, Xiao-He; Jing, Wu; Zhang, Wen-Bo; Wang, Jiang-Hao; Yun, Qing-Long; Wang, Yi-Qing; Yi, Sui.
Afiliação
  • Wang XH; School of Energy and Mining Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, China. wangxh_1994@163.com.
  • Jing W; School of Energy and Mining Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, China. wujing_0227@163.com.
  • Zhang WB; School of Energy and Mining Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, China.
  • Wang JH; School of Energy and Mining Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, China.
  • Yun QL; School of Energy and Mining Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, China.
  • Wang YQ; School of Energy and Mining Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, China.
  • Yi S; Transportation College, Jilin University, Jilin, 130000, China.
Sci Rep ; 13(1): 18255, 2023 Oct 25.
Article em En | MEDLINE | ID: mdl-37880353
ABSTRACT
This research delineates the energy dissipation characteristics in coal crushing under impact loads, leveraging the capabilities of Separated Hopkinson Pressure Bar experimental system. A meticulous examination of both burst-prone and non-burst-prone coal samples during destruction processes was undertaken to decipher the dynamic compression mechanical attributes from perspectives of energy and fragmentatio's fractal dimensions. Burst-prone coal showcases a more pronounced escalation in fragmentation work in comparison to non-burst-prone samples, thereby illustrating a perceptible strain-rate dependent effect correlating with enhanced strain rates. Additionally, it was observed that incident, reflected, and transmitted energy trajectories for both sample categories follow an approximately linear ascendancy, albeit exhibiting diverse magnitudes. Burst-prone coal manifests a more rapid and focused energy growth compared to its non-burst-prone counterpart. When subjected to impact loads, a notable trend was discerned where the fragmentation's fractional dimension escalated persistently with both the incident energy and the crushing work, portraying a prominent growth effect. The insights garnered from this study pave the way for distinguishing between impacted and unimpacted coal samples using energy perspectives and fragmentation's fractal dimensions.

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article