Your browser doesn't support javascript.
loading
On-surface synthesis of a doubly anti-aromatic carbon allotrope.
Gao, Yueze; Albrecht, Florian; Roncevic, Igor; Ettedgui, Isaac; Kumar, Paramveer; Scriven, Lorel M; Christensen, Kirsten E; Mishra, Shantanu; Righetti, Luca; Rossmannek, Max; Tavernelli, Ivano; Anderson, Harry L; Gross, Leo.
Afiliação
  • Gao Y; Department of Chemistry, Oxford University, Chemistry Research Laboratory, Oxford, UK.
  • Albrecht F; IBM Research Europe - Zürich, Rüschlikon, Switzerland.
  • Roncevic I; Department of Chemistry, Oxford University, Chemistry Research Laboratory, Oxford, UK.
  • Ettedgui I; Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czechia.
  • Kumar P; Department of Chemistry, Oxford University, Chemistry Research Laboratory, Oxford, UK.
  • Scriven LM; Department of Chemistry, Oxford University, Chemistry Research Laboratory, Oxford, UK.
  • Christensen KE; Department of Chemistry, Oxford University, Chemistry Research Laboratory, Oxford, UK.
  • Mishra S; Department of Chemistry, Oxford University, Chemistry Research Laboratory, Oxford, UK.
  • Righetti L; IBM Research Europe - Zürich, Rüschlikon, Switzerland.
  • Rossmannek M; IBM Quantum, IBM Research - Zürich, Rüschlikon, Switzerland.
  • Tavernelli I; IBM Quantum, IBM Research - Zürich, Rüschlikon, Switzerland.
  • Anderson HL; IBM Quantum, IBM Research - Zürich, Rüschlikon, Switzerland.
  • Gross L; Department of Chemistry, Oxford University, Chemistry Research Laboratory, Oxford, UK. harry.anderson@chem.ox.ac.uk.
Nature ; 623(7989): 977-981, 2023 Nov.
Article em En | MEDLINE | ID: mdl-37880363
ABSTRACT
Synthetic carbon allotropes such as graphene1, carbon nanotubes2 and fullerenes3 have revolutionized materials science and led to new technologies. Many hypothetical carbon allotropes have been discussed4, but few have been studied experimentally. Recently, unconventional synthetic strategies such as dynamic covalent chemistry5 and on-surface synthesis6 have been used to create new forms of carbon, including γ-graphyne7, fullerene polymers8, biphenylene networks9 and cyclocarbons10,11. Cyclo[N]carbons are molecular rings consisting of N carbon atoms12,13; the three that have been reported to date (N = 10, 14 and 18)10,11 are doubly aromatic, which prompts the question is it possible to prepare doubly anti-aromatic versions? Here we report the synthesis and characterization of an anti-aromatic carbon allotrope, cyclo[16]carbon, by using tip-induced on-surface chemistry6. In addition to structural information from atomic force microscopy, we probed its electronic structure by recording orbital density maps14 with scanning tunnelling microscopy. The observation of bond-length alternation in cyclo[16]carbon confirms its double anti-aromaticity, in concordance with theory. The simple structure of C16 renders it an interesting model system for studying the limits of aromaticity, and its high reactivity makes it a promising precursor to novel carbon allotropes15.

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article