Your browser doesn't support javascript.
loading
Molecularly Imprinted Electrochemical Sensors Based on Ti3C2Tx-MXene and Graphene Composite Modifications for Ultrasensitive Cortisol Detection.
Liu, Hengchao; Qin, Wenjing; Li, XinXin; Feng, Lei; Gu, Changshun; Chen, Junji; Tian, Zhenhao; Chen, Jianxing; Yang, Min; Qiao, Hanying; Guo, Xiujie; Zhang, Yan; Zhao, Boxin; Yin, Shougen.
Afiliação
  • Liu H; School of Materials Science and Engineering, Key Laboratory of Display Materials and Photoelectric Devices, Ministry of Education, and Tianjin Key Laboratory for Photoelectric Materials and Devices, Tianjin University of Technology, Tianjin 300384, China.
  • Qin W; School of Materials Science and Engineering, Key Laboratory of Display Materials and Photoelectric Devices, Ministry of Education, and Tianjin Key Laboratory for Photoelectric Materials and Devices, Tianjin University of Technology, Tianjin 300384, China.
  • Li X; School of Materials Science and Engineering, Key Laboratory of Display Materials and Photoelectric Devices, Ministry of Education, and Tianjin Key Laboratory for Photoelectric Materials and Devices, Tianjin University of Technology, Tianjin 300384, China.
  • Feng L; School of Materials Science and Engineering, Key Laboratory of Display Materials and Photoelectric Devices, Ministry of Education, and Tianjin Key Laboratory for Photoelectric Materials and Devices, Tianjin University of Technology, Tianjin 300384, China.
  • Gu C; School of Materials Science and Engineering, Key Laboratory of Display Materials and Photoelectric Devices, Ministry of Education, and Tianjin Key Laboratory for Photoelectric Materials and Devices, Tianjin University of Technology, Tianjin 300384, China.
  • Chen J; School of Materials Science and Engineering, Key Laboratory of Display Materials and Photoelectric Devices, Ministry of Education, and Tianjin Key Laboratory for Photoelectric Materials and Devices, Tianjin University of Technology, Tianjin 300384, China.
  • Tian Z; School of Materials Science and Engineering, Key Laboratory of Display Materials and Photoelectric Devices, Ministry of Education, and Tianjin Key Laboratory for Photoelectric Materials and Devices, Tianjin University of Technology, Tianjin 300384, China.
  • Chen J; School of Materials Science and Engineering, Key Laboratory of Display Materials and Photoelectric Devices, Ministry of Education, and Tianjin Key Laboratory for Photoelectric Materials and Devices, Tianjin University of Technology, Tianjin 300384, China.
  • Yang M; School of Materials Science and Engineering, Key Laboratory of Display Materials and Photoelectric Devices, Ministry of Education, and Tianjin Key Laboratory for Photoelectric Materials and Devices, Tianjin University of Technology, Tianjin 300384, China.
  • Qiao H; School of Materials Science and Engineering, Key Laboratory of Display Materials and Photoelectric Devices, Ministry of Education, and Tianjin Key Laboratory for Photoelectric Materials and Devices, Tianjin University of Technology, Tianjin 300384, China.
  • Guo X; School of Materials Science and Engineering, Key Laboratory of Display Materials and Photoelectric Devices, Ministry of Education, and Tianjin Key Laboratory for Photoelectric Materials and Devices, Tianjin University of Technology, Tianjin 300384, China.
  • Zhang Y; School of Materials Science and Engineering, Key Laboratory of Display Materials and Photoelectric Devices, Ministry of Education, and Tianjin Key Laboratory for Photoelectric Materials and Devices, Tianjin University of Technology, Tianjin 300384, China.
  • Zhao B; School of Materials Science and Engineering, Key Laboratory of Display Materials and Photoelectric Devices, Ministry of Education, and Tianjin Key Laboratory for Photoelectric Materials and Devices, Tianjin University of Technology, Tianjin 300384, China.
  • Yin S; School of Materials Science and Engineering, Key Laboratory of Display Materials and Photoelectric Devices, Ministry of Education, and Tianjin Key Laboratory for Photoelectric Materials and Devices, Tianjin University of Technology, Tianjin 300384, China.
Anal Chem ; 95(44): 16079-16088, 2023 11 07.
Article em En | MEDLINE | ID: mdl-37883745
ABSTRACT
The increasing pressure and unhealthy lifestyle are gradually eroding the physical and mental health of modern people. As a key hormone responsible for maintaining the normal functioning of human systems, cortisol plays a vital role in regulating physiological activities. Moreover, cortisol can serve as a marker for monitoring psychological stress. The development of cortisol detection sensors carries immense potential, as they not only facilitate timely adjustments and treatments by detecting abnormal physiological indicators but also provide comprehensive data for conducting research on the correlation between cortisol and several potential diseases. Here, we report a molecularly imprinted polymer (MIP) electrochemical biosensor that utilizes a porous composite (MXG) modified electrode. MXG composite is prepared by combining Ti3C2Tx-MXene sheets and graphene (Gr). MXG composite material with high conductive properties and large electroactive surface area promotes the charge transfer capability of the electrode surface, expands the effective surface area of the sensor, and increases the content of cortisol-imprinted cavities on the electrode, thereby improving the sensing ability of the sensor. By optimizing the preparation process, the prepared sensor has an ultralow lower limit of detection of 0.4 fM, a wide detection range of 1 fM-10 µM, and good specificity for steroid hormones and interfering substances with similar cortisol structure. The ability of the sensor to detect cortisol in saliva was also confirmed experimentally. This highly sensitive and selective cortisol sensor is expected to be widely used in the fields of physiological and psychological care.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Impressão Molecular / Grafite Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Impressão Molecular / Grafite Idioma: En Ano de publicação: 2023 Tipo de documento: Article