Your browser doesn't support javascript.
loading
Immobilization of phosphorus in water-sediment system by iron-modified attapulgite, calcite, bentonite and dolomite under feed input condition: Efficiency, mechanism, application mode effect and response of microbial communities and iron mobilization.
Jin, Siyu; Lin, Jianwei; Zhan, Yanhui.
Afiliação
  • Jin S; College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China.
  • Lin J; College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China. Electronic address: jwlin@shou.edu.cn.
  • Zhan Y; College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China.
Water Res ; 247: 120777, 2023 Dec 01.
Article em En | MEDLINE | ID: mdl-37897994
ABSTRACT
Four kinds of iron-based materials, i.e., iron-modified attapulgite, calcite, bentonite and dolomite (abbreviated as Fe-ATP, Fe-CA, Fe-BT and Fe-DOL, respectively) were prepared and used to immobilize the phosphorus in the system of overlying water (O-water) and sediment under the feed input condition, and their immobilization efficiencies and mechanisms were investigated. The influence of application mode on the immobilization of phosphorus in the water-sediment system by Fe-ATP, Fe-CA, Fe-BT and Fe-DOL was researched. The effects of Fe-ATP, Fe-CA, Fe-BT and Fe-DOL on the concentration of labile iron in the water-sediment system and the microbial communities in sediment were also studied. The results showed that the Fe-ATP, Fe-CA, Fe-BT and Fe-DOL addition all can effectively immobilize the soluble reactive phosphorus (SRP), dissolved total phosphorus (DTP) and diffusive gradients in thin-films (DGT)-labile phosphorus in O-water under the feed input condition, and also had the ability to inactivate the DGT-labile phosphorus in the top sediment. Although the change in the application mode from the one-time addition to the multiple addition reduced the inactivation efficiencies of SRP and DTP in O-water in the early period of application, it increased the immobilization efficiencies in the later period of application. Although Fe-ATP, Fe-CA, Fe-BT and Fe-DOL had a certain releasing risk of iron into the pore water, they had negligible risk of iron release into O-water. The addition of Fe-ATP, Fe-CA, Fe-BT or Fe-DOL reshaped the sediment bacterial community structure and can affect the microorganism-driven phosphorus cycle in the sediment. Results of this work suggest that Fe-ATP, Fe-CA, Fe-BT and Fe-DOL are promising phosphorus-inactivation materials to immobilize the phosphorus in the water-sediment system under the feed input condition.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Poluentes Químicos da Água / Microbiota Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Poluentes Químicos da Água / Microbiota Idioma: En Ano de publicação: 2023 Tipo de documento: Article