Your browser doesn't support javascript.
loading
Regulation of the integrin αVß3- actin filaments axis in early osteogenic differentiation of human mesenchymal stem cells under cyclic tensile stress.
Peng, Yan; Qu, Rongmei; Yang, Yuchao; Fan, Tingyu; Sun, Bing; Khan, Asmat Ullah; Wu, Shutong; Liu, Wenqing; Zhu, Jinhui; Chen, Junxin; Li, Xiaoqing; Dai, Jingxing; Ouyang, Jun.
Afiliação
  • Peng Y; Guangdong Provincial Key Laboratory of Medical Biomechanics and Guangdong Engineering Research Center for Translation of Medical 3D Printing Application and National Virtual and Reality Experimental Education Center for Medical Morphology and National Key Discipline of Human Anatomy, School of Basic
  • Qu R; Guangdong Provincial Key Laboratory of Medical Biomechanics and Guangdong Engineering Research Center for Translation of Medical 3D Printing Application and National Virtual and Reality Experimental Education Center for Medical Morphology and National Key Discipline of Human Anatomy, School of Basic
  • Yang Y; Guangdong Provincial Key Laboratory of Medical Biomechanics and Guangdong Engineering Research Center for Translation of Medical 3D Printing Application and National Virtual and Reality Experimental Education Center for Medical Morphology and National Key Discipline of Human Anatomy, School of Basic
  • Fan T; Guangdong Provincial Key Laboratory of Medical Biomechanics and Guangdong Engineering Research Center for Translation of Medical 3D Printing Application and National Virtual and Reality Experimental Education Center for Medical Morphology and National Key Discipline of Human Anatomy, School of Basic
  • Sun B; Guangdong Provincial Key Laboratory of Medical Biomechanics and Guangdong Engineering Research Center for Translation of Medical 3D Printing Application and National Virtual and Reality Experimental Education Center for Medical Morphology and National Key Discipline of Human Anatomy, School of Basic
  • Khan AU; Guangdong Provincial Key Laboratory of Medical Biomechanics and Guangdong Engineering Research Center for Translation of Medical 3D Printing Application and National Virtual and Reality Experimental Education Center for Medical Morphology and National Key Discipline of Human Anatomy, School of Basic
  • Wu S; Guangdong Provincial Key Laboratory of Medical Biomechanics and Guangdong Engineering Research Center for Translation of Medical 3D Printing Application and National Virtual and Reality Experimental Education Center for Medical Morphology and National Key Discipline of Human Anatomy, School of Basic
  • Liu W; Guangdong Provincial Key Laboratory of Medical Biomechanics and Guangdong Engineering Research Center for Translation of Medical 3D Printing Application and National Virtual and Reality Experimental Education Center for Medical Morphology and National Key Discipline of Human Anatomy, School of Basic
  • Zhu J; Guangdong Provincial Key Laboratory of Medical Biomechanics and Guangdong Engineering Research Center for Translation of Medical 3D Printing Application and National Virtual and Reality Experimental Education Center for Medical Morphology and National Key Discipline of Human Anatomy, School of Basic
  • Chen J; Shenzhen Andy New Material Technology Co., LTD, Shenzhen, 518106, China.
  • Li X; Shenzhen Andy New Material Technology Co., LTD, Shenzhen, 518106, China.
  • Dai J; Guangdong Provincial Key Laboratory of Medical Biomechanics and Guangdong Engineering Research Center for Translation of Medical 3D Printing Application and National Virtual and Reality Experimental Education Center for Medical Morphology and National Key Discipline of Human Anatomy, School of Basic
  • Ouyang J; Guangdong Provincial Key Laboratory of Medical Biomechanics and Guangdong Engineering Research Center for Translation of Medical 3D Printing Application and National Virtual and Reality Experimental Education Center for Medical Morphology and National Key Discipline of Human Anatomy, School of Basic
Cell Commun Signal ; 21(1): 308, 2023 10 30.
Article em En | MEDLINE | ID: mdl-37904190
ABSTRACT

BACKGROUND:

Integrins are closely related to mechanical conduction and play a crucial role in the osteogenesis of human mesenchymal stem cells. Here we wondered whether tensile stress could influence cell differentiation through integrin αVß3.

METHODS:

We inhibited the function of integrin αVß3 of human mesenchymal stem cells by treating with c(RGDyk). Using cytochalasin D and verteporfin to inhibit polymerization of microfilament and function of nuclear Yes-associated protein (YAP), respectively. For each application, mesenchymal stem cells were loaded by cyclic tensile stress of 10% at 0.5 Hz for 2 h daily. Mesenchymal stem cells were harvested on day 7 post-treatment. Western blotting and quantitative RT-PCR were used to detect the expression of alkaline phosphatase (ALP), RUNX2, ß-actin, integrin αVß3, talin-1, vinculin, FAK, and nuclear YAP. Immunofluorescence staining detected vinculin, actin filaments, and YAP nuclear localization.

RESULTS:

Cyclic tensile stress could increase the expression of ALP and RUNX2. Inhibition of integrin αVß3 activation led to rearrangement of actin filaments and downregulated the expression of ALP, RUNX2 and promoted YAP nuclear localization. When microfilament polymerization was inhibited, ALP, RUNX2, and nuclear YAP nuclear localization decreased. Inhibition of YAP nuclear localization could reduce the expression of ALP and RUNX2.

CONCLUSIONS:

Cyclic tensile stress promotes early osteogenesis of human mesenchymal stem cells via the integrin αVß3-actin filaments axis. YAP nuclear localization participates in this process of human mesenchymal stem cells. Video Abstract.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Osteogênese / Células-Tronco Mesenquimais Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Osteogênese / Células-Tronco Mesenquimais Idioma: En Ano de publicação: 2023 Tipo de documento: Article