Your browser doesn't support javascript.
loading
PFTK1 kinase regulates axogenesis during development via RhoA activation.
González, Yasmilde Rodríguez; Kamkar, Fatemeh; Jafar-Nejad, Paymaan; Wang, Suzi; Qu, Dianbo; Alvarez, Leticia Sanchez; Hawari, Dina; Sonnenfeld, Margaret; Slack, Ruth S; Albert, Paul R; Park, David S; Joselin, Alvin.
Afiliação
  • González YR; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada.
  • Kamkar F; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada.
  • Jafar-Nejad P; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada.
  • Wang S; Present Address: Ionis Pharmaceuticals Inc., Carlsbad, CA, 92010, USA.
  • Qu D; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada.
  • Alvarez LS; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada.
  • Hawari D; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada.
  • Sonnenfeld M; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada.
  • Slack RS; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada.
  • Albert PR; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada.
  • Park DS; Ottawa Hospital Research Institute and Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, K1H 8M5, Canada.
  • Joselin A; Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada. david.park1@ucalgary.ca.
BMC Biol ; 21(1): 240, 2023 10 31.
Article em En | MEDLINE | ID: mdl-37907898
ABSTRACT

BACKGROUND:

PFTK1/Eip63E is a member of the cyclin-dependent kinases (CDKs) family and plays an important role in normal cell cycle progression. Eip63E expresses primarily in postnatal and adult nervous system in Drosophila melanogaster but its role in CNS development remains unknown. We sought to understand the function of Eip63E in the CNS by studying the fly ventral nerve cord during development.

RESULTS:

Our results demonstrate that Eip63E regulates axogenesis in neurons and its deficiency leads to neuronal defects. Functional interaction studies performed using the same system identify an interaction between Eip63E and the small GTPase Rho1. Furthermore, deficiency of Eip63E homolog in mice, PFTK1, in a newly generated PFTK1 knockout mice results in increased axonal outgrowth confirming that the developmental defects observed in the fly model are due to defects in axogenesis. Importantly, RhoA phosphorylation and activity are affected by PFTK1 in primary neuronal cultures. We report that GDP-bound inactive RhoA is a substrate of PFTK1 and PFTK1 phosphorylation is required for RhoA activity.

CONCLUSIONS:

In conclusion, our work establishes an unreported neuronal role of PFTK1 in axon development mediated by phosphorylation and activation of GDP-bound RhoA. The results presented add to our understanding of the role of Cdks in the maintenance of RhoA-mediated axon growth and its impact on CNS development and axonal regeneration.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Quinases Ciclina-Dependentes / Drosophila melanogaster Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Quinases Ciclina-Dependentes / Drosophila melanogaster Idioma: En Ano de publicação: 2023 Tipo de documento: Article