Your browser doesn't support javascript.
loading
Ephedrine and cocaine cause developmental neurotoxicity and abnormal behavior in zebrafish.
Ma, Dong-Dong; Shi, Wen-Jun; Li, Si-Ying; Zhang, Jin-Ge; Lu, Zhi-Jie; Long, Xiao-Bing; Liu, Xin; Huang, Chu-Shu; Ying, Guang-Guo.
Afiliação
  • Ma DD; SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, Un
  • Shi WJ; SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, Un
  • Li SY; SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, Un
  • Zhang JG; SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, Un
  • Lu ZJ; SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, Un
  • Long XB; SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, Un
  • Liu X; Anti-Drug Technology Center of Guangdong Province and National Anti-Drug Laboratory Guangdong Regional Center, Guangdong Provincial Key Laboratory of Psychoactive Substances Monitoring and Safety, Guangzhou 510230, China.
  • Huang CS; Anti-Drug Technology Center of Guangdong Province and National Anti-Drug Laboratory Guangdong Regional Center, Guangdong Provincial Key Laboratory of Psychoactive Substances Monitoring and Safety, Guangzhou 510230, China.
  • Ying GG; SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, Un
Aquat Toxicol ; 265: 106765, 2023 Dec.
Article em En | MEDLINE | ID: mdl-37979497
ABSTRACT
Ephedrine (EPH) and cocaine (COC) are illegal stimulant drugs, and have been frequently detected in aquatic environments. EPH and COC have negative effects on the nervous system and cause abnormal behaviors in mammals and fish at high concentrations, but their mechanisms of neurotoxicity remain unclear in larvae fish at low concentrations. To address this issue, zebrafish embryos were exposed to EPH and COC for 14 days post-fertilization (dpf) at 10, 100, and 1000 ng L-1. The bioaccumulation, development, behavior, cell neurotransmitter levels and apoptosis were detected to investigate the developmental neurotoxicity (DNT) of EPH and COC. The results showed that EPH decreased heart rate, while COC increased heart rate. EPH caused cell apoptosis in the brain by AO staining. In addition, behavior analysis indicated that EPH and COC affected spontaneous movement, touch-response, swimming activity and anxiety-like behaviors. EPH and COC altered the levels of the neurotransmitters dopamine (DA) and γ-aminobutyric acid (GABA) with changes of the transcription of genes related to the DA and GABA pathways. These findings indicated that EPH and COC had noticeable DNT in the early stage of zebrafish at environmentally relevant concentrations.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Poluentes Químicos da Água / Cocaína Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Poluentes Químicos da Água / Cocaína Idioma: En Ano de publicação: 2023 Tipo de documento: Article