Your browser doesn't support javascript.
loading
Sphingolipids in Childhood Asthma and Obesity (SOAP Study): A Protocol of a Cross-Sectional Study.
Antonisamy, Belavendra; Shailesh, Harshita; Hani, Yahya; Ahmed, Lina Hayati M; Noor, Safa; Ahmed, Salma Yahya; Alfaki, Mohamed; Muhayimana, Abidan; Jacob, Shana Sunny; Balayya, Saroja Kotegar; Soloviov, Oleksandr; Liu, Li; Mathew, Lisa Sara; Wang, Kun; Tomei, Sara; Al Massih, Alia; Mathew, Rebecca; Karim, Mohammed Yousuf; Ramanjaneya, Manjunath; Worgall, Stefan; Janahi, Ibrahim A.
Afiliação
  • Antonisamy B; Department of Pediatric Medicine, Sidra Medicine, Doha P.O. Box 26999, Qatar.
  • Shailesh H; Department of Pediatric Medicine, Sidra Medicine, Doha P.O. Box 26999, Qatar.
  • Hani Y; Department of Pediatric Medicine, Sidra Medicine, Doha P.O. Box 26999, Qatar.
  • Ahmed LHM; Department of Pediatric Medicine, Sidra Medicine, Doha P.O. Box 26999, Qatar.
  • Noor S; Department of Pediatric Medicine, Sidra Medicine, Doha P.O. Box 26999, Qatar.
  • Ahmed SY; Department of Pediatric Medicine, Sidra Medicine, Doha P.O. Box 26999, Qatar.
  • Alfaki M; Department of Pediatric Medicine, Sidra Medicine, Doha P.O. Box 26999, Qatar.
  • Muhayimana A; Department of Pediatric Medicine, Sidra Medicine, Doha P.O. Box 26999, Qatar.
  • Jacob SS; Analytical Chemistry Core, Advanced Diagnostic Core Facilities, Sidra Medicine, Doha P.O. Box 26999, Qatar.
  • Balayya SK; Analytical Chemistry Core, Advanced Diagnostic Core Facilities, Sidra Medicine, Doha P.O. Box 26999, Qatar.
  • Soloviov O; Clinical Genomics Laboratory, Integrated Genomics Services, Sidra Medicine, Doha P.O. Box 26999, Qatar.
  • Liu L; Clinical Genomics Laboratory, Integrated Genomics Services, Sidra Medicine, Doha P.O. Box 26999, Qatar.
  • Mathew LS; Clinical Genomics Laboratory, Integrated Genomics Services, Sidra Medicine, Doha P.O. Box 26999, Qatar.
  • Wang K; Clinical Genomics Laboratory, Integrated Genomics Services, Sidra Medicine, Doha P.O. Box 26999, Qatar.
  • Tomei S; Omics Core, Integrated Genomics Services, Sidra Medicine, Doha P.O. Box 26999, Qatar.
  • Al Massih A; Omics Core, Integrated Genomics Services, Sidra Medicine, Doha P.O. Box 26999, Qatar.
  • Mathew R; Omics Core, Integrated Genomics Services, Sidra Medicine, Doha P.O. Box 26999, Qatar.
  • Karim MY; Department of Pathology, Sidra Medicine, Doha P.O. Box 26999, Qatar.
  • Ramanjaneya M; College of Medicine, Qatar University, Doha P.O. Box 2713, Qatar.
  • Worgall S; Qatar Metabolic Institute, Hamad Medical Corporation, Doha P.O. Box 3050, Qatar.
  • Janahi IA; Translational Research Institute, Hamad Medical Corporation, Doha P.O. Box 3050, Qatar.
Metabolites ; 13(11)2023 Nov 11.
Article em En | MEDLINE | ID: mdl-37999242
ABSTRACT
Asthma and obesity are two of the most common chronic conditions in children and adolescents. There is increasing evidence that sphingolipid metabolism is altered in childhood asthma and is linked to airway hyperreactivity. Dysregulated sphingolipid metabolism is also reported in obesity. However, the functional link between sphingolipid metabolism, asthma, and obesity is not completely understood. This paper describes the protocol of an ongoing study on sphingolipids that aims to examine the pathophysiology of sphingolipids in childhood asthma and obesity. In addition, this study aims to explore the novel biomarkers through a comprehensive multi-omics approach including genomics, genome-wide DNA methylation, RNA-Seq, microRNA (miRNA) profiling, lipidomics, metabolomics, and cytokine profiling. This is a cross-sectional study aiming to recruit 440 children from different groups children with asthma and normal weight (n = 100), asthma with overweight or obesity (n = 100), overweight or obesity (n = 100), normal weight (n = 70), and siblings of asthmatic children with normal weight, overweight, or obesity (n = 70). These participants will be recruited from the pediatric pulmonology, pediatric endocrinology, and general pediatric outpatient clinics at Sidra Medicine, Doha, Qatar. Information will be obtained from self-reported questionnaires on asthma, quality of life, food frequency (FFQ), and a 3-day food diary that are completed by the children and their parents. Clinical measurements will include anthropometry, blood pressure, biochemistry, bioelectrical impedance, and pulmonary function tests. Blood samples will be obtained for sphingolipid analysis, serine palmitoyltransferase (SPT) assay, whole-genome sequencing (WGS), genome-wide DNA methylation study, RNA-Seq, miRNA profiling, metabolomics, lipidomics, and cytokine analysis. Group comparisons of continuous outcome variables will be carried out by a one-way analysis of variance or the Kruskal-Wallis test using an appropriate pairwise multiple comparison test. The chi-squared test or a Fisher's exact test will be used to test the associations between categorical variables. Finally, multivariate analysis will be carried out to integrate the clinical data with multi-omics data. This study will help us to understand the role of dysregulated sphingolipid metabolism in obesity and asthma. In addition, the multi-omics data from the study will help to identify novel genetic and epigenetic signatures, inflammatory markers, and mechanistic pathways that link asthma and obesity in children. Furthermore, the integration of clinical and multi-omics data will help us to uncover the potential interactions between these diseases and to offer a new paradigm for the treatment of pediatric obesity-associated asthma.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article