Your browser doesn't support javascript.
loading
Comparative Transcriptome Analysis Reveals the Molecular Mechanisms of Acetic Acid Reduction by Adding NaHSO3 in Actinobacillus succinogenes GXAS137.
Li, Shiyong; Song, Chaodong; Zhang, Hongyan; Qin, Yan; Jiang, Mingguo; Shen, Naikun.
Afiliação
  • Li S; 1Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Guangxi Key Laboratory of Microbial Plant Resources and Utilization, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning, China.
  • Song C; 1Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Guangxi Key Laboratory of Microbial Plant Resources and Utilization, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning, China.
  • Zhang H; 1Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Guangxi Key Laboratory of Microbial Plant Resources and Utilization, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning, China.
  • Qin Y; 2National Non-Grain Bio-Energy Engineering Research Center, Guangxi Academy of Sciences, Nanning, China.
  • Jiang M; 1Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Guangxi Key Laboratory of Microbial Plant Resources and Utilization, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning, China.
  • Shen N; 1Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Guangxi Key Laboratory of Microbial Plant Resources and Utilization, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning, China.
Pol J Microbiol ; 72(4): 399-411, 2023 Dec 01.
Article em En | MEDLINE | ID: mdl-38000010
Acetic acid (AC) is a major by-product from fermentation processes for producing succinic acid (SA) using Actinobacillus succinogenes. Previous experiments have demonstrated that sodium bisulfate (NaHSO3) can significantly decrease AC production by A. succinogenes GXAS137 during SA fermentation. However, the mechanism of AC reduction is poorly understood. In this study, the transcriptional profiles of the strain were compared through Illumina RNA-seq to identify differentially expressed genes (DEGs). A total of 210 DEGs were identified by expression analysis: 83 and 127 genes up-regulated and down-regulated, respectively, in response to NaHSO3 treatment. The functional annotation analysis of DEGs showed that the genes were mainly involved in carbohydrates, inorganic ions, amino acid transport, metabolism, and energy production and conversion. The mechanisms of AC reduction might be related to two aspects: (i) the lipoic acid synthesis pathway (LipA, LipB) was significantly down-regulated, which blocked the pathway catalyzed by pyruvate dehydrogenase complex to synthesize acetyl-coenzyme A (acetyl-CoA) from pyruvate; (ii) the expression level of the gene encoding bifunctional acetaldehyde-alcohol dehydrogenase was significantly up-regulated, and this effect facilitated the synthesis of ethanol from acetyl-CoA. However, the reaction of NaHSO3 with the intermediate metabolite acetaldehyde blocked the production of ethanol and consumed acetyl-CoA, thereby decreasing AC production. Thus, our study provides new insights into the molecular mechanism of AC decreased underlying the treatment of NaHSO3 and will deepen the understanding of the complex regulatory mechanisms of A. succinogenes.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Ácido Acético / Ácido Succínico Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Ácido Acético / Ácido Succínico Idioma: En Ano de publicação: 2023 Tipo de documento: Article