Your browser doesn't support javascript.
loading
RSK3 switches cell fate: from stress-induced senescence to malignant progression.
Huna, Anda; Flaman, Jean-Michel; Lodillinsky, Catalina; Zhu, Kexin; Makulyte, Gabriela; Pakulska, Victoria; Coute, Yohann; Ruisseaux, Clémence; Saintigny, Pierre; Hernandez-Vargas, Hector; Defossez, Pierre-Antoine; Boissan, Mathieu; Martin, Nadine; Bernard, David.
Afiliação
  • Huna A; Cancer Research Center of Lyon, Inserm U1052, CNRS UMR 5286, Université de Lyon, Centre Léon Bérard, 69373, Lyon, France.
  • Flaman JM; Equipe Labellisée La Ligue Contre Le Cancer, Lyon, France.
  • Lodillinsky C; Cancer Research Center of Lyon, Inserm U1052, CNRS UMR 5286, Université de Lyon, Centre Léon Bérard, 69373, Lyon, France.
  • Zhu K; Equipe Labellisée La Ligue Contre Le Cancer, Lyon, France.
  • Makulyte G; INSERM UMR_S 938, Saint-Antoine Research Center, CRSA, University Sorbonne, Paris, France.
  • Pakulska V; Research Area, Instituto de Oncología Ángel H. Roffo, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
  • Coute Y; Cancer Research Center of Lyon, Inserm U1052, CNRS UMR 5286, Université de Lyon, Centre Léon Bérard, 69373, Lyon, France.
  • Ruisseaux C; Equipe Labellisée La Ligue Contre Le Cancer, Lyon, France.
  • Saintigny P; Cancer Research Center of Lyon, Inserm U1052, CNRS UMR 5286, Université de Lyon, Centre Léon Bérard, 69373, Lyon, France.
  • Hernandez-Vargas H; Equipe Labellisée La Ligue Contre Le Cancer, Lyon, France.
  • Defossez PA; Université Grenoble Alpes, Inserm, UA13 BGE, CNRS, CEA, FR2048, 38000, Grenoble, France.
  • Boissan M; Université Grenoble Alpes, Inserm, UA13 BGE, CNRS, CEA, FR2048, 38000, Grenoble, France.
  • Martin N; Cancer Research Center of Lyon, Inserm U1052, CNRS UMR 5286, Université de Lyon, Centre Léon Bérard, 69373, Lyon, France.
  • Bernard D; Cancer Research Center of Lyon, Inserm U1052, CNRS UMR 5286, Université de Lyon, Centre Léon Bérard, 69373, Lyon, France.
J Exp Clin Cancer Res ; 42(1): 318, 2023 Nov 27.
Article em En | MEDLINE | ID: mdl-38008756
BACKGROUND: TGFß induces several cell phenotypes including senescence, a stable cell cycle arrest accompanied by a secretory program, and epithelial-mesenchymal transition (EMT) in normal epithelial cells. During carcinogenesis cells lose the ability to undergo senescence in response to TGFß but they maintain an EMT, which can contribute to tumor progression. Our aim was to identify mechanisms promoting TGFß-induced senescence escape. METHODS: In vitro experiments were performed with primary human mammary epithelial cells (HMEC) immortalized by hTert. For kinase library screen and modulation of gene expression retroviral transduction was used. To characterize gene expression, RNA microarray with GSEA analysis and RT-qPCR were used. For protein level and localization, Western blot and immunofluorescence were performed. For senescence characterization crystal violet assay, Senescence Associated-ß-Galactosidase activity, EdU staining were conducted. To determine RSK3 partners FLAG-baited immunoprecipitation and mass spectrometry-based proteomic analyses were performed. Proteosome activity and proteasome enrichment assays were performed. To validate the role of RSK3 in human breast cancer, analysis of METABRIC database was performed. Murine intraductal xenografts using MCF10DCIS.com cells were carried out, with histological and immunofluorescence analysis of mouse tissue sections. RESULTS: A screen with active kinases in HMECs upon TGFß treatment identified that the serine threonine kinase RSK3, or RPS6KA2, a kinase mainly known to regulate cancer cell death including in breast cancer, reverted TGFß-induced senescence. Interestingly, RSK3 expression decreased in response to TGFß in a SMAD3-dependent manner, and its constitutive expression rescued SMAD3-induced senescence, indicating that a decrease in RSK3 itself contributes to TGFß-induced senescence. Using transcriptomic analyses and affinity purification coupled to mass spectrometry-based proteomics, we unveiled that RSK3 regulates senescence by inhibiting the NF-κΒ pathway through the decrease in proteasome-mediated IκBα degradation. Strikingly, senescent TGFß-treated HMECs display features of epithelial to mesenchymal transition (EMT) and during RSK3-induced senescence escaped HMECs conserve EMT features. Importantly, RSK3 expression is correlated with EMT and invasion, and inversely correlated with senescence and NF-κΒ in human claudin-low breast tumors and its expression enhances the formation of breast invasive tumors in the mouse mammary gland. CONCLUSIONS: We conclude that RSK3 switches cell fate from senescence to malignancy in response to TGFß signaling.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Neoplasias da Mama / Neoplasias Mamárias Animais Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Neoplasias da Mama / Neoplasias Mamárias Animais Idioma: En Ano de publicação: 2023 Tipo de documento: Article