Your browser doesn't support javascript.
loading
PA suppresses antitumor immunity of T cells by disturbing mitochondrial activity through Akt/mTOR-mediated Ca2+ flux.
Sun, Shishuo; Xu, Heng; Zhao, Wanxin; Li, Qihong; Yuan, Yifan; Zhang, Guopeng; Li, Shuyu; Wang, Bixi; Zhang, Wei; Gao, Xiaoge; Zheng, Junnian; Zhang, Qing.
Afiliação
  • Sun S; Cancer Institute, the First Clinical Medical College, Xuzhou Medical University, Xuzhou, Jiangsu, PR China; Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, PR China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Insti
  • Xu H; Cancer Institute, the First Clinical Medical College, Xuzhou Medical University, Xuzhou, Jiangsu, PR China; Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, PR China.
  • Zhao W; Cancer Institute, the First Clinical Medical College, Xuzhou Medical University, Xuzhou, Jiangsu, PR China; Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, PR China.
  • Li Q; Cancer Institute, the First Clinical Medical College, Xuzhou Medical University, Xuzhou, Jiangsu, PR China; Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, PR China.
  • Yuan Y; Cancer Institute, the First Clinical Medical College, Xuzhou Medical University, Xuzhou, Jiangsu, PR China; Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, PR China.
  • Zhang G; Cancer Institute, the First Clinical Medical College, Xuzhou Medical University, Xuzhou, Jiangsu, PR China; Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, PR China.
  • Li S; Cancer Institute, the First Clinical Medical College, Xuzhou Medical University, Xuzhou, Jiangsu, PR China; Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, PR China.
  • Wang B; Cancer Institute, the First Clinical Medical College, Xuzhou Medical University, Xuzhou, Jiangsu, PR China; Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, PR China.
  • Zhang W; Cancer Institute, the First Clinical Medical College, Xuzhou Medical University, Xuzhou, Jiangsu, PR China; Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, PR China.
  • Gao X; Cancer Institute, the First Clinical Medical College, Xuzhou Medical University, Xuzhou, Jiangsu, PR China; Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, PR China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Insti
  • Zheng J; Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, PR China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, PR China. Electronic address: jnzheng@xzhmu.edu.cn.
  • Zhang Q; Cancer Institute, the First Clinical Medical College, Xuzhou Medical University, Xuzhou, Jiangsu, PR China; Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, PR China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Insti
Cancer Lett ; 581: 216511, 2024 01 28.
Article em En | MEDLINE | ID: mdl-38013049
ABSTRACT
Deciphering the mechanisms behind how T cells become exhausted and regulatory T cells (Tregs) differentiate in a tumor microenvironment (TME) will significantly benefit cancer immunotherapy. A common metabolic alteration feature in TME is lipid accumulation, associated with T cell exhaustion and Treg differentiation. However, the regulatory role of free fatty acids (FFA) on T cell antitumor immunity has yet to be clearly illustrated. Our study observed that palmitic acid (PA), the most abundant saturated FFA in mouse plasma, enhanced T cell exhaustion and Tregs population in TME and increased tumor growth. In contrast, oleic acid (OA), a monounsaturated FFA, rescued PA-induced T cell exhaustion, decreased Treg population, and ameliorated T cell antitumor immunity in an obese mouse model. Mechanistically, mitochondrial metabolic activity is critical in maintaining T cell function, which PA attenuated. PA-induced T cell exhaustion and Treg formation depended on CD36 and Akt/mTOR-mediated calcium signaling. The study described a new mechanism of PA-induced downregulation of antitumor immunity of T cells and the therapeutic potential behind its restoration by targeting PA.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Ácido Palmítico / Proteínas Proto-Oncogênicas c-akt Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Ácido Palmítico / Proteínas Proto-Oncogênicas c-akt Idioma: En Ano de publicação: 2024 Tipo de documento: Article