Your browser doesn't support javascript.
loading
Cascaded Antitumor Therapy Excited by Dual Nanozymes Based on Energy Restriction and Photocatalysis.
Li, Zhuo; Bian, Jiaxin; Xu, Zichuang; Zhang, Xuwu; He, Yuchu; Ye, Fei; Tu, Wenkang; Liu, Yunhe; Ni, Song; Gao, Dawei.
Afiliação
  • Li Z; State Key Laboratory of Metastable Materials Science and Technology, Nano-Biotechnology Key Lab of Hebei Province, Applying Chemistry Key Lab of Hebei Province, Yanshan University, Qinhuangdao 066004, P. R. China.
  • Bian J; State Key Laboratory of Metastable Materials Science and Technology, Nano-Biotechnology Key Lab of Hebei Province, Applying Chemistry Key Lab of Hebei Province, Yanshan University, Qinhuangdao 066004, P. R. China.
  • Xu Z; State Key Laboratory of Metastable Materials Science and Technology, Nano-Biotechnology Key Lab of Hebei Province, Applying Chemistry Key Lab of Hebei Province, Yanshan University, Qinhuangdao 066004, P. R. China.
  • Zhang X; State Key Laboratory of Metastable Materials Science and Technology, Nano-Biotechnology Key Lab of Hebei Province, Applying Chemistry Key Lab of Hebei Province, Yanshan University, Qinhuangdao 066004, P. R. China.
  • He Y; State Key Laboratory of Metastable Materials Science and Technology, Nano-Biotechnology Key Lab of Hebei Province, Applying Chemistry Key Lab of Hebei Province, Yanshan University, Qinhuangdao 066004, P. R. China.
  • Ye F; State Key Laboratory of Metastable Materials Science and Technology, Nano-Biotechnology Key Lab of Hebei Province, Applying Chemistry Key Lab of Hebei Province, Yanshan University, Qinhuangdao 066004, P. R. China.
  • Tu W; State Key Laboratory of Metastable Materials Science and Technology, Nano-Biotechnology Key Lab of Hebei Province, Applying Chemistry Key Lab of Hebei Province, Yanshan University, Qinhuangdao 066004, P. R. China.
  • Liu Y; National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.
  • Ni S; National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.
  • Gao D; State Key Laboratory of Metastable Materials Science and Technology, Nano-Biotechnology Key Lab of Hebei Province, Applying Chemistry Key Lab of Hebei Province, Yanshan University, Qinhuangdao 066004, P. R. China.
Article em En | MEDLINE | ID: mdl-38016813
ABSTRACT
In nanocatalytic medicine, drugs can be transformed into toxic components through highly selective and highly specific catalytic reactions in the tumor microenvironment, avoiding toxic side effects on normal tissues. Due to the coexistence of Ce3+ and Ce4+, CeO2 is endowed with dual nanozyme activities. Herein, CeO2 nanoparticles served as templates to construct a biomimetic nanodrug delivery system (C/CeO2@M) by electrostatic adsorption of carbon quantum dots (CQDs) and coating a homologous tumor cytomembrane. After homologous targeting to tumors, the CQDs emitted 350-600 nm light under 660 nm laser irradiation by upconversion luminescence, which caused a CeO2-mediated photocatalytic reaction to generate reactive oxygen species. The catalase-like activity of CeO2-enabled converting excess H2O2 to O2, which not only alleviated tumor hypoxia and promoted intratumor drug delivery but also provided substrates for subsequent catalytic reactions. Meanwhile, the phosphatase activity of CeO2 could consume adenosine triphosphate (ATP) to block the energy supply for tumor cells, thus limiting cell proliferation and metastasis. The strategy of energy restriction and photocatalysis of dual nanozyme stimulation offers great potentials in enhancing drug penetration and eradicating solid tumors.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article