Your browser doesn't support javascript.
loading
Antimalarial activity of Toona ciliata MJ Roem aqueous methanolic leaf extract and its antioxidant and phytochemical properties.
Singh, Nalini; Chatterjee, Aditi; Chanu, Wahengbam Kabita; Vaishalli, Pradeep Mini; Singh, Chingakham Brajakishor; Nagaraj, Viswanathan Arun.
Afiliação
  • Singh N; Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, 751023, Odisha, India.
  • Chatterjee A; Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, 751023, Odisha, India.
  • Chanu WK; School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, 751024, Odisha, India.
  • Vaishalli PM; Plant Bioresources Division, Institute of Bioresources and Sustainable Development, Imphal, 795001, Manipur, India.
  • Singh CB; Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, 751023, Odisha, India.
  • Nagaraj VA; Plant Bioresources Division, Institute of Bioresources and Sustainable Development, Imphal, 795001, Manipur, India.
J Tradit Complement Med ; 13(6): 550-560, 2023 Nov.
Article em En | MEDLINE | ID: mdl-38020553
ABSTRACT
Background and

aim:

Malaria is a global health issue causing substantial morbidity and mortality. Screening of various traditionally important medicinal plants is a key source for the discovery of new antimalarials. We evaluated the antimalarial and antioxidant activities, and performed detailed phytochemical analyses of Toona ciliata MJ Roem aqueous methanolic leaf extract (TcMLE). Experimental procedures In vitro antiplasmodial studies in Plasmodium falciparum (Pf) 3D7 and PfCam3.IR539T strains were performed by [3H]-hypoxanthine uptake assays. In vitro cytotoxicity in HeLa and HEK293T cell lines was evaluated using MTT assays. Hemolysis assay was performed using RBCs. Phytochemical analysis by GC-MS and in vitro antioxidant studies by DPPH and ABTS assays were performed. In vivo antimalarial studies in Pb-infected mice were carried out using Rane's test and Peters' 4-day test. Results and

conclusions:

TcMLE showed significant in vitro antioxidant activity and had phytochemicals reported for antimalarial activity. In vitro studies showed prominent antiplasmodial activity against Pf3D7 strain (IC50 ∼22 µg/ml) and PfCam3. IR539Tstrain (IC50 value ∼43 µg/ml). In vitro cytotoxicity studies, in vitro hemolytic assays, and in vivo acute toxicity studies further suggested that TcMLE is nontoxic. In vivo antimalarial studies using Rane's test showed a significant decrease in parasitemia by ∼70% at 1200 mg/kg doses and delayed the mortality of mice by ∼10-14 days. Peters' 4-day test also showed a similar pattern. The present study demonstrated the antimalarial potential of TcMLE. These findings deliver a platform for further studies to identify the active components of TcMLE and discover new antimalarials.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article