Your browser doesn't support javascript.
loading
Microbes within the building envelope-a case study on the patterns of colonization and potential sampling bias.
Davies, Lucy R; Barbero-López, Aitor; Lähteenmäki, Veli-Matti; Salonen, Antti; Fedorik, Filip; Haapala, Antti; Watts, Phillip C.
Afiliação
  • Davies LR; Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland.
  • Barbero-López A; Department of Chemistry, University of Eastern Finland, Joensuu, Finland.
  • Lähteenmäki VM; Department of Chemistry, University of Eastern Finland, Joensuu, Finland.
  • Salonen A; Civil Engineering, Faculty of Technology, University of Oulu, Oulu, Finland.
  • Fedorik F; Civil Engineering, Faculty of Technology, University of Oulu, Oulu, Finland.
  • Haapala A; Department of Chemistry, University of Eastern Finland, Joensuu, Finland.
  • Watts PC; Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland.
PeerJ ; 11: e16355, 2023.
Article em En | MEDLINE | ID: mdl-38025723
ABSTRACT
Humans are exposed to diverse communities of microbes every day. With more time spent indoors by humans, investigations into the communities of microbes inhabiting occupied spaces have become important to deduce the impacts of these microbes on human health and building health. Studies so far have given considerable insight into the communities of the indoor microbiota humans interact with, but mainly focus on sampling surfaces or indoor dust from filters. Beneath the surfaces though, building envelopes have the potential to contain environments that would support the growth of microbial communities. But due to design choices and distance from ground moisture, for example, the temperature and humidity across a building will vary and cause environmental gradients. These microenvironments could then influence the composition of the microbial communities within the walls. Here we present a case study designed to quantify any patterns in the compositions of fungal and bacterial communities existing in a building envelope and determine some of the key variables, such as cardinal direction, distance from floor or distance from wall joinings, that may influence any microbial community composition variation. By drilling small holes across walls of a house, we extracted microbes onto air filters and conducted amplicon sequencing. We found sampling height (distance from the floor) and cardinal direction the wall was facing caused differences in the diversity of the microbial communities, showing that patterns in the microbial composition will be dependent on sampling location within the building. By sampling beneath the surfaces, our approach provides a more complete picture of the microbial condition of a building environment, with the significant variation in community composition demonstrating a potential sampling bias if multiple sampling locations across a building are not considered. By identifying features of the built environment that promote/retard microbial growth, improvements to building designs can be made to achieve overall healthier occupied spaces.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Microbiota Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Microbiota Idioma: En Ano de publicação: 2023 Tipo de documento: Article