Your browser doesn't support javascript.
loading
Imrecoxib attenuates bleomycin-induced pulmonary fibrosis in mice.
Miao, Yang; Yang, Yue; Li, Xiaohe; Meng, Lingxin; Mao, Jiahe; Zhang, Jianwei; Gao, Jingjing; Yang, Cheng; Gu, Xiaoting; Zhou, Honggang; Zhang, Yanping.
Afiliação
  • Miao Y; State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, China.
  • Yang Y; State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, China.
  • Li X; State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, China.
  • Meng L; State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, China.
  • Mao J; State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, China.
  • Zhang J; State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, China.
  • Gao J; Tianjin Jikun Technology Co., Ltd. Tianjin, 301700, China.
  • Yang C; State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, China.
  • Gu X; State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, China.
  • Zhou H; State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, China.
  • Zhang Y; The Second Department of Respiratory and Critical Care Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China.
Heliyon ; 9(11): e20914, 2023 Nov.
Article em En | MEDLINE | ID: mdl-38027732
ABSTRACT
Idiopathic pulmonary fibrosis (IPF) is an incurable chronic progressive disease with a low survival rate and ineffective therapeutic options. We examined the effects of imrecoxib, a nonsteroidal anti-inflammatory drug, on experimental pulmonary fibrosis. The mouse IPF model was established by intratracheal instillation of bleomycin. From Day 0 to Day 13, the mice were orally administered imrecoxib (100 mg/kg) and pirfenidone (200 mg/kg) daily, and from Day 7 to Day 13, the mice were orally administered pirfenidone and imrecoxib daily. The tissues were dissected on the 14th day. Mouse body weight was measured, and histopathological examination and hydroxyproline content analysis confirmed that the administration of imrecoxib exerted a similar effect to pirfenidone. Compared with bleomycin-induced mice, imrecoxib-treated mice showed significantly reduced inflammatory factor expression (IL-1 and TNF-α) and inflammatory cell numbers (macrophages, lymphocytes, and neutrophils) in BALF (bronchoalveolar lavage fluid). Our experiment tested the ability of imrecoxib to inhibit the signal pathway involved in gene expression induced by TGF-ß1 in the NIH-3T3 cell line in vitro. Western blotting showed that imrecoxib (20 µM and 40 µM) inhibited the expression of fibronectin, type I collagen and CTGF. In addition, imrecoxib reduced the levels of p-ERK1/2. The changes in the expression of related proteins in mouse lung tissue were similar to those in cells. In summary, our findings suggested that the administration of imrecoxib prevented and treated murine IPF by inhibiting inflammation and the TGF-ß1-ERK1/2 signaling pathway.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article