Your browser doesn't support javascript.
loading
Siliceous zeolite-derived topology of amorphous silica.
Masai, Hirokazu; Kohara, Shinji; Wakihara, Toru; Shibazaki, Yuki; Onodera, Yohei; Masuno, Atsunobu; Sukenaga, Sohei; Ohara, Koji; Sakai, Yuki; Haines, Julien; Levelut, Claire; Hébert, Philippe; Isambert, Aude; Keen, David A; Azuma, Masaki.
Afiliação
  • Masai H; Department of Materials and Chemistry, National Institute of Advanced Industrial Science and Technology, 1-8-31 Midorigaoka, Ikeda, Osaka, 563-8577, Japan. hirokazu.masai@aist.go.jp.
  • Kohara S; Center for Basic Research on Materials, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki, 305-0047, Japan. KOHARA.Shinji@nims.go.jp.
  • Wakihara T; Institute of Engineering Innovation, The University of Tokyo, Yayoi 2-11-16, Bunkyo-ku, Tokyo, 113-8656, Japan.
  • Shibazaki Y; Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki, 305-0801, Japan.
  • Onodera Y; Institute for Integrated Radiation and Nuclear Science, Kyoto University, 2-1010 Asashiro-nishi, Kumatori-cho, Sennan-gun, Osaka, 590-0494, Japan.
  • Masuno A; Center for Basic Research on Materials, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki, 305-0047, Japan.
  • Sukenaga S; Graduate School of Engineering, Kyoto University, Kyotodaigaku-katsura, Nishikyo-ku, Kyoto, 615-8520, Japan.
  • Ohara K; Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi, 980-8577, Japan.
  • Sakai Y; Japan Synchrotron Radiation Research Institute (JASRI/SPring-8), Kouto, Sayo-cho, Hyogo, 679-5198, Japan.
  • Haines J; Faculty Materials for Energy, Shimane University, 1060 Nishikawatsu-cho, Matsue, Shimane, 690-8504, Japan.
  • Levelut C; Kanagawa Institute of Industrial Science and Technology (KISTEC), 705-1 Shimoimaizumi, Ebina, Kanagawa, 243-0435, Japan.
  • Hébert P; Laboratory for Materials and Structures, Tokyo Institute of Technology, 4259 Nagatsuta, Yokohama, Kanagawa, 226-8503, Japan.
  • Isambert A; Institut Charles Gerhardt Montpellier, CNRS, Université de Montpellier, ENSCM, 34293 Cedex 5, Montpellier, France.
  • Keen DA; Laboratoire Charles Coulomb, CNRS, Université de Montpellier, 34095, Montpellier, France.
  • Azuma M; CEA, DAM Le Ripault, F-37260, Monts, France.
Commun Chem ; 6(1): 269, 2023 Dec 09.
Article em En | MEDLINE | ID: mdl-38071376
ABSTRACT
The topology of amorphous materials can be affected by mechanical forces during compression or milling, which can induce material densification. Here, we show that densified amorphous silica (SiO2) fabricated by cold compression of siliceous zeolite (SZ) is permanently densified, unlike densified glassy SiO2 (GS) fabricated by cold compression although the X-ray diffraction data and density of the former are identical to those of the latter. Moreover, the topology of the densified amorphous SiO2 fabricated from SZ retains that of crystalline SZ, whereas the densified GS relaxes to pristine GS after thermal annealing. These results indicate that it is possible to design new functional amorphous materials by tuning the topology of the initial zeolitic crystalline phases.

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article