Your browser doesn't support javascript.
loading
Bio-orthogonally Activatable Fluorescent Probe for Specific Imaging of Myeloid Cell Leukemia 1 Protein.
Li, Yong; Zhang, Jiangong; Ni, Xiaolong; Wang, Xu; Zhang, Jian; Xie, Xilei; Dou, Xueyu; Jiao, Xiaoyun; Tang, Bo.
Afiliação
  • Li Y; College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal Un
  • Zhang J; College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal Un
  • Ni X; College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal Un
  • Wang X; College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal Un
  • Zhang J; College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal Un
  • Xie X; College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal Un
  • Dou X; College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal Un
  • Jiao X; College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal Un
  • Tang B; College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal Un
Anal Chem ; 95(51): 18836-18843, 2023 12 26.
Article em En | MEDLINE | ID: mdl-38079286
The antiapoptotic protein myeloid cell leukemia 1 (Mcl-1) has been increasingly identified as a promising potential therapeutic target attributed to its critical regulation effect in diverse cellar physiopathological events. Current fluorescence imaging strategies tend to be susceptible to the cellular microenvironment, and straightforward mapping of Mcl-1's level variation remains challenging. In this paper, an activatable "off-on" fluorescence strategy for Mcl-1 specific labeling was presented based on bio-orthogonal chemistry by introducing tetrazine-functionalized borondipyrromethene (TB) as a fluorescent reporter and trans-cyclooctyne-derived indole-2-carboxylic acid (TI) as an Mcl-1 targeting moiety. With the click pair of TB and TI, the Mcl-1 expression level in vitro and in vivo was successfully mapped straightforward. Also, the level changes of Mcl-1 upon drug challenge were demonstrated. This work provides a robust fluorescence strategy for Mcl-1 in situ imaging, and the results would further facilitate the comprehensive revelation of the Mcl-1 biological effect.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Leucemia / Proteínas Proto-Oncogênicas c-bcl-2 Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Leucemia / Proteínas Proto-Oncogênicas c-bcl-2 Idioma: En Ano de publicação: 2023 Tipo de documento: Article