PhytoPipe: a phytosanitary pipeline for plant pathogen detection and diagnosis using RNA-seq data.
BMC Bioinformatics
; 24(1): 470, 2023 Dec 13.
Article
em En
| MEDLINE
| ID: mdl-38093207
BACKGROUND: Detection of exotic plant pathogens and preventing their entry and establishment are critical for the protection of agricultural systems while securing the global trading of agricultural commodities. High-throughput sequencing (HTS) has been applied successfully for plant pathogen discovery, leading to its current application in routine pathogen detection. However, the analysis of massive amounts of HTS data has become one of the major challenges for the use of HTS more broadly as a rapid diagnostics tool. Several bioinformatics pipelines have been developed to handle HTS data with a focus on plant virus and viroid detection. However, there is a need for an integrative tool that can simultaneously detect a wider range of other plant pathogens in HTS data, such as bacteria (including phytoplasmas), fungi, and oomycetes, and this tool should also be capable of generating a comprehensive report on the phytosanitary status of the diagnosed specimen. RESULTS: We have developed an open-source bioinformatics pipeline called PhytoPipe (Phytosanitary Pipeline) to provide the plant pathology diagnostician community with a user-friendly tool that integrates analysis and visualization of HTS RNA-seq data. PhytoPipe includes quality control of reads, read classification, assembly-based annotation, and reference-based mapping. The final product of the analysis is a comprehensive report for easy interpretation of not only viruses and viroids but also bacteria (including phytoplasma), fungi, and oomycetes. PhytoPipe is implemented in Snakemake workflow with Python 3 and bash scripts in a Linux environment. The source code for PhytoPipe is freely available and distributed under a BSD-3 license. CONCLUSIONS: PhytoPipe provides an integrative bioinformatics pipeline that can be used for the analysis of HTS RNA-seq data. PhytoPipe is easily installed on a Linux or Mac system and can be conveniently used with a Docker image, which includes all dependent packages and software related to analyses. It is publicly available on GitHub at https://github.com/healthyPlant/PhytoPipe and on Docker Hub at https://hub.docker.com/r/healthyplant/phytopipe .
Palavras-chave
Texto completo:
1
Base de dados:
MEDLINE
Assunto principal:
Biologia Computacional
/
Sequenciamento de Nucleotídeos em Larga Escala
Idioma:
En
Ano de publicação:
2023
Tipo de documento:
Article